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Abstract

Statistical power is an important detail to consider in the design phase of any experiment.
This note serves as a reference on power calculations for experimental economists. We syn-
thesize many of the questions and issues frequently brought up regarding power calculations
and the literature that surrounds that. We provide practical coded examples and tools available
for calculating power, and suggest when and how to report power calculations in published
studies.

1 Introduction

In spite of years of teaching and using statistics, we had not developed an intuitive
sense of the reliability of statistical results observed in small samples. (Kahneman,
2011)

The purpose of this note is to provide a concise and consolidated resource for experimental economists
regarding power calculations. The significance of a test is central to our understanding of hypothe-
sis testing, while its cousin, statistical power, remains peripheral. Power calculations are important
for experiment and survey design. Nonetheless, researchers are either not performing power anal-
yses, or are simply not reporting them (Zhang and Ortmann, 2013; Czibor et al., 2019). Thus, it is
important to reiterate and provide additional resources for ex ante analysis of statistical power, and
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what, if anything, to report ex post.1

In Section 2 we provide the formal definition of power, and provide intuition for how to opera-
tionalize it. Section 3 describes the contexts in which reporting power calculations is relevant and
in Section 4 we discuss what calculations can be considered after an experiment has already been
conducted. Section 5 considers some experimental designs for which it may be difficult to obtain
sufficient power in smaller samples. In Section 6 we provide several options for computing power
calculations, including simulated power calculations with sample code. Section 7 concludes.

2 What is statistical power?

Power is the probability that an experiment will lead to the rejection of the null hypothesis if it is
indeed false, given a pre-specified target significance threshold (??, Ger). In intervention research,
this is referred to as sensitivity, or the ability to detect a difference between the treatment and con-
trol conditions for some outcome of interest. Choosing the statistical power of a test in the design
phase of an experiment helps researchers determine how much data to collect, given their research
question(s). Power is not linked to causal inference, nor is it a tool for analysing data. It is an
experimental design tool, and is rarely reported in experimental economics papers.

Consider the context of a field experiment, where a researcher wants to estimate the impact of a
cash incentive on a preventative health behavior, such as reducing alcohol consumption. She will
conduct an experiment with a randomly assigned treatment group that receives a cash incentive
and a control group that does not. Suppose there is in fact a strong positive relationship between
receiving the particular incentive and alcohol consumption. If the test to find the relationship is
under-powered, it indicates that the probability of observing the relationship is low. This is prob-
lematic because failing to reject a false null hypothesis (i.e. conclude that the incentive is neither
definitively effective nor ineffective) could result in people being harmed if the intervention is
adopted into policy under the assumption that it is harmless.

Before conducting the experiment, the researcher specifies a null and alternative hypothesis for
each outcome variable of interest.2 We follow the convention of deriving power following the po-
tential outcomes framework and Rubin causal model that is frequently used to discuss randomized
experiments (e.g. Athey and Imbens (2016); Chow et al. (2008); List et al. (2011)). Let the ob-
served outcome of the treatment be denoted µ̂ ∼ N(µ, σ2/n).3 Suppose there are two potential
outcomes from the treatment, µ0 and µ1, where µ0 refers to the outcome in the absence of the

1For additional references on power in the behavioral sciences see Cohen (1988); Murphy et al. (2014); Gerber
and Green (2012)

2Just as each hypothesis test has its own significance, each test also has its own power.
3In Section 6 we touch on non-normally distributed outcomes.
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treatment effect (which is captured empirically via the control group), and µ1 refers to the outcome
in the presence of the treatment (which is captured empirically via the treatment group).

Let θ = µ1 − µ0 denote the true treatment effect for the main variable of interest. Let the re-
searcher’s null hypothesis for θ be that θ = θ0, where θ0 ∈ <. For example, if the researcher wants
to test the hypothesis of no difference between treatment and control, then θ0 would be zero. The
researcher chooses a one-sided alternative that there is some positive treatment effect greater than
θ0.

Null Hypothesis
H0 : θ = θ0

Alternate Hypothesis
H1 : θ > θ0

where θ0 ≥ 0. Results from hypothesis tests are in terms of H0; one either rejects H0 or fails to
reject H0. When deciding whether to reject H0 it is possible to make two kinds of errors.

A Type I error, or a false negative, occurs if one rejects the null hypothesis, when it is in fact true.
The probability of a Type I error is denoted as α.4 It occurs if θ̂ falls “too far” from θ0 for the
researcher to believe that θ0 is the true value of θ. What constitutes “too far” is decided by the
researcher, and generally it is set so that α ≤ 0.05. This is illustrated below. Let c denote the
(non-standardized) cut-off such that the researcher will reject H0 if θ̂ > c.

α = Prob(rejectH0|H0)

= Prob(θ̂ ≥ c|H0)

We standardize c so that we can use the standard normal statistical tables to identify the critical
value for any given α, as follows:

4Traditionally, α ∈ 0.10, 0.05, 0.01. Recently, Benjamin et al. (2018) advocate for redefining statistical
significance in economics according to an α = 0.005 for claims of new discoveries.
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α = Prob([
θ̂ − θ0

σ√
n

] ≥ [
c− θ0)

σ√
n

]) =⇒

1− α = Prob([
θ̂ − θ0

σ√
n

] ≤ [
c− θ0

σ√
n

])

= Φ(
c− θ0

σ√
n

) =⇒

Φ−1(1− α) =
c− θ0

σ√
n

=⇒

B1−α =
c− θ0

σ√
n

where B1−α is the critical value associated with the 1− α portion of the standard normal distribu-
tion that is centered around θ0. Note that (B1−α = −Bα). For example, for a normally distributed
outcome variable, if the researcher chooses a one-sided test with α=0.05, then B1−α=1.645. This
means that the researcher will reject H0 if the normalized θ̂ exceeds 1.645.

Statistical power is related to the second type of error, the Type II error. A Type II error, or a false
positive, occurs if one does not reject the null hypothesis when it is in fact false. Our researcher
would be committing a Type II error if the true treatment effect were something other than θ0, but
she fails to reject the hypothesis that it is θ0. The probability of a Type II error is denoted as β.
Power is 1-Pr(Type II error).

The approach to analysing power depends on whether the researcher chooses a simple alternative,
such as θ = θ1, or a composite alternative, such as θ > θ0. For the simple alternative, the power
of the test is defined relative to a specific H1 - the researcher must assert that θ will exclusively
take either θ0 or another value, say θ1. This requires one power calculation, which we derive below.

Single power calculations, for a specific H1, are frequently done for composite alternatives. How-
ever, to truly calculate power for a composite alternative, the researcher must estimate a power
function. Calculating a power function requires the same steps as a power calculation for the sim-
ple hypothesis, but rather than calculating a single β (for θ =θ1), the researcher will calculate a
β for each possible alternative value of θ (e.g. all integers greater than zero). A power function,
therefore, returns the power associated with a range of alternative θ’s under H1. The researcher
can then determine the minimum effect that will yield the lowest acceptable statistical power, for
a given n.
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β = Prob(fail to rejectH0|H1)

= Prob(θ̂ ≤ c|H1)

= Prob([
θ̂ − θ1

σ√
n

] ≤ [
c− θ1)

σ√
n

])

= Φ(
c− θ1)

σ√
n

) =⇒

Φ−1(β) =
c− θ1

σ√
n

=⇒

Bβ =
c− θ1

σ√
n

where Bβ is the critical value associated with the β portion of the standard normal distribution
conditional on H1 being true (e.g. for a distribution centered around θ1). For example, for an
outcome variable with a standard normal distribution, if the researcher chooses β=0.20, then 1 - β
= 0.8, and Bβ=0.84.

Note that c is the same in both the α and β formulas. On one side of c the researcher feels she
cannot reject H0 (and can reject H1). On the other side of c, she feels she must reject H0 (in which
implies she thinks that that H1 is more likely to be true, given the data). Bβ and B1−α are different
in so far as the normalized c is a different number of standardized units away from each of θ0 and θ1.

Solving both α and β equations for expressions of c obtains:

c
σ√
n

= −Bα +
θ0
σ√
n

c
σ√
n

= Bβ +
θ1
σ√
n

Setting the two critical values that satisfy Type I and Type II errors, we can solve for the sample
size, n:
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n = (Bα +Bβ)2 − σ2

(θ1 − θ0)2
(1)

Replacing the parameters with values and solving for n prior to data collection is what we refer
to as “power calculations.” Note that Bα determines Bβ for a given θ0, θ1, σ and n. This makes
clear the trade-off between power and significance, and how this trade-off may change as we vary
θ1 (for composite null hypotheses). However, for the same α one can obtain additional power by
increasing n, or by choosing a wider distance between θ0 and θ1. Across disciplines, it is generally
accepted to aim for a power of 0.8 (Lenth, 2001).5

We have presented Bα and Bβ as the critical values in the standard normal distribution, and this
would indeed hold if σ were known. But if σ is unknown, it is typically estimated using sam-
ple variances. As a result, the critical values associated with Bα and Bβ will be taken from a
t-distribution rather than a standard normal distribution.

Also note that rather than specifying θ1, the researcher can use Equation 1 to determine the mini-
mum detectable effect (MDE) size, θ1−θ0, that she would be able to observe, given a fixed sample
size n.

3 When to report power?

Taking power into account in a study design is important for economists because doing so increases
efficiency of experimental design. The idea is to avoid samples that are either unnecessarily large
(and thus unnecessarily expensive) or too small to detect an effect. It also disciplines the researcher
to focus on economically meaningful effects, because an effect size must be chosen (along with
α, β, and σ) in order to determine n. But once an experiment is completed we might ask if it is
necessary to report the power calculations used to arrive at its sample size. We posit that reporting
power calculations is useful under two scenarios in particular: a) when a study was too underpow-
ered ex ante to then detect the statistically significant effect that it does find and b) for replicating
studies and publishing well-designed studies with null effects.

It is important to emphasize that reporting power calculations does not help in the interpretation
of the experimental results. Once an experiment has been completed we should rely on statistical

5Replications generally require higher power, e.g. Camerer et al. (2016).
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inference to determine the impact of our result. This includes not just the point-estimate of the
effect size and its p-value, but also a discussion of the estimate’s confidence interval. Power and
confidence intervals are linked through sample size, and a low powered study will be reflected in a
wide, and thus inconclusive, confidence interval. That interval could include treatment effects that
are and are not economically meaningful, even if the point estimate is statistically significant.6

When researchers report their results from a study they are also providing validated sample statis-
tics for other researchers to use (or not to use). We refer again to Equation 1. What values should
be used for µ0, µ1 and σ? Researchers can either run pilot studies to estimate µ0 and σ (while
choosing an anticipated µ1) or they can look to past studies for these sample statistics. One caveat
to the latter is that past studies’ effect sizes be representative of a intervention’s true effect in a pop-
ulation. In particular, overstated effect sizes in low powered studies should not be used to power
future studies (Gelman and Carlin, 2014; Button et al., 2013; Ioannidis, 2005; Szucs and Ioannidis,
2017). As seen in Figure 1, the lower the power of a test, the closer thatH0 andH1 will be. A more
extreme point estimate is, therefore, needed in order to reject H0 in favor of H1 in low powered
study. Using a t-distribution, as opposed to a standard normal distribution does not adjust for this.
Since the tails of t-distribution are wider than those of the normal distribution, t-scores are larger
than Z-scores for the same level of significance. Therefore, only large deviations, far in the tail
of the H1 distribution, will classify as statistically significant in underpowered studies. Powering
a study using an overstated effect size as a target for µ1 would lead to yet another underpowered
study.

Reporting power calculations is also important for replication exercises and qualifying null effects
as recommended by the Journal of the Economic Science Association (Nikiforakis and Slonim,
2015). Publishing failure to detect significance in a well-powered study, where others may have
found a significant effect, is an important part of the scientific process. For example, Zethraeus
et al. (2009) study the relationship between hormones and economic behavior in the lab. The
authors are explicit about the power of their study, which is sufficiently high at over 90%. Partic-
ipants are randomized into different hormone treatment groups and then play a series of games.
The authors find no significant effect, a contradiction to existing correlative results (e.g. Apicella
et al. (2008); Burnham (2007)). Such a result deserves consideration for publication, as it adds to
a body of scientific evidence. Anything less than this contributes to the publication bias.7

One practice that has taken hold in recent years that asks researchers to report power calculations
for their study before it is conducted is pre-registration. Pre-registration essentially forces a re-
searcher to publicize her intended hypothesis tests and the needed sample size for those tests.8 The

6Goodman and Berlin (1994) provide a useful rule-of-thumb (Predicted 95% CI = observed difference +- 0.7 *
(true difference 80% power)) for predicted confidence intervals, which depend on the observed effect size, β, and α.

7A few pooled replication papers have received considerable attention in economics and psychology (Camerer
et al., 2016; Nosek, 2015), but it remains to be seen if individual, well-powered studies that find no effect will occupy
space in top journals.

8For example, AEA RCT Registry.
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researcher would list any statistical software and associated commands that they used to perform
the calculations. If the researcher uses simulations to explore power, the code should be provided.
This prevents the researcher from data mining, or running dozens of hypothesis tests, while only
reporting the one or two significant results (Anderson, 2008), because the study is only powered to
detect a certain number of effects. But, as Coffman and Niederle (2015) detail, the main downside
to pre-analysis plans is that they tie researchers to particular analyses and inhibit exploratory work,
which can be particularly taxing for young researchers or researchers without sufficient budgets
to carry out pilot studies. As a result, Coffman and Niederle (2015) advocate for establishing a
norm that journals publish well-powered replications of studies rather than tying researchers to
pre-analysis plans.

4 What can we compute ex-post?

Researchers may find themselves in a situation where the experiment has been completed and ei-
ther a) they did not use power to determine sample size, b) the parameter values they chose for the
ex ante power calculations were inaccurate and actual effect sizes were much smaller (or larger)
than anticipated, and/or c) their study faced considerable attrition (at random) and were unable to
maintain the sample size that their original power calculations dictated (as often occurs with field
studies). The researcher then wants to know what can be computed ex post?

First, we can begin with what should not be done ex post. One temptation may be to retrospectively
calculate an “observed” or “post hoc” power given the observed p-value, treatment effect, variance
and sample size from the completed experiment. This calculation is problematic because power is
not an observable concept (Lenth, 2001; Hoenig and Heisey, 2001; Goodman and Berlin, 1994).
Target significance, based on α, is an ex ante concept that is useful insofar as it helps us calculate
power. But the observed significance has nothing to do with power. Moreover, observed power and
observed p-value are inversely related, while the ex ante trade-off between α and 1− β is positive
(Hoenig and Heisey, 2001). The difference is subtle, and often goes unrecognized. We provide a
small graphical example, which we believe best exhibits the fallacy of observed power.

Take a scenario where the researcher pre-specifies an α = 0.05, and β = 0.2, and is testing H0 :
θ̂ = 0 against H1 : θ̂ 6= 0, where θ̂ follows a standard normal distribution. B1−α/2 = 1.96. Her
observed test statistic is 1.9, with distributionH ′1. She fails to reject the null (top panel of Figure 2).
Now she decides to compute observed power. Observed power is the probability that the observed
statistic falls to the left of 1.96 under H ′1, the curve centered around 1.9 (Prob(θ̂ ≥ 1.96|θ = 1.9)).
The bottom panel of Figure 2 has “observed power” shaded. We can see that this probability will
always be 0.5 or less (since the probability of landing to the left of 1.9 is 0.5 and to the right of 1.9
is 0.5). We can also see that if α had been smaller than 0.05, then observed power would be even
smaller.
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Hoenig and Heisey (2001)[pg 2] plot observed power against the pre-specified α, which shows
that any insignificant estimate from a study will, mechanically, exhibit an ex post power that is less
than 50%. Conversely, any significant estimate from a study will, mechanically, exhibit ex post
power that is greater than 50%. For this reason, any ex post power calculation where the effect is
significant will result in high ex post power, and, conversely, insignificant effects will result in low
ex post power.

Note that abandoning observed power does not conflict with performing the ex post calculation
recommended by Nikiforakis and Slonim (2015), particularly for the publication of studies with
null effects. One can calculate the minimum detectable effect size given the sample size, and esti-
mates of σ, α, and β from the data, which, crucially, does not depend on whether the study found a
significant result or not. The latter information cannot help with inference on the study’s observed
results, but it can provide a clue as to whether economically meaningful effect sizes might have
been overlooked in the original study design, particularly if the researcher was overly optimistic
with respect to the magnitude of the intervention’s effect.

Other ex post methodologies to replace observed power calculations have been proposed, but are
beyond the main scope of this paper. Bayarri et al. (2016) focus on the use of Bayes factors in
evaluating the pre- and post- rejection ratios of statistical tests, and is also a suggested response to
improving replications of studies (Benjamin et al., 2018). Given the recent focus on this methodol-
ogy, we provide examples from Benjamin et al. (2019) in the Online Supplementary Materials.
Gelman and Carlin (2014) propose design analysis with accompanying code, which focuses on
how to interpret results from studies with small sample sizes. In particular, they focus on the prob-
ability that a found effect size is the wrong sign or is far in magnitude from the true effect size, and
whether the minimum detectable effect is scientifically meaningful.

In sum, once an experiment has been completed, and a statistically significant effect was not found,
a researcher has the option of computing the minimum detectable effect given their sample size
and variance. They should also consider the confidence intervals around their effects to determine
how well measured their effect sizes are. Both low power and poor measurement can result in wide
confidence intervals. But one should not compute the 1− β associated with an observed effect.

5 Considerations for small samples

Power poses a particular challenge to researchers limited to using small samples, because of, for
example, funding constraints or working with hard to reach samples (more common for lab-in-
the-field studies). We discuss four design features that are often employed in lab experiments and
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explain how they reduce the power of study. Each of these features demand a larger sample size to
detect an effect with a given size, variance, α, and β.

Between-subject experiments Most experiments use either a between- or a within-subjects exper-
imental design (some may involve both). Between-subject designs require a larger sample size than
within study designs to reach the same level of statistical power. A between subjects design in-
volves comparing the mean outcomes between separate samples drawn from the same population.
A within study design involves comparing the mean outcome for each individual across different
treatments. Intuitively, for a within study, each participant serves as their own control, whereas
in a between design a large fraction of the total sample has to be designated as the control group.
Bellemare et al. (2014), for example, shows that “between study designs require 4 to 8 times more
subjects than a within study design to reach an acceptable level of statistical power.”

The relationship between the required sample sizes for a between, NB, versus within, NW , design
with two treatments is: NW = NB

(1−ρ)
2

, where ρ is the correlation between the outcomes under
each treatment in a within-subjects design (Maxwell et al., 2004)[p. 561]. When ρ is 0, NW is half
of NB for a given α, β, µ0, µ1 and σ. Because every participant can provide two data points in
the within design, the between design will need twice as many participants. And when ρ is pos-
itive, the correlation between a subject’s outcomes across treatments further reduces the sample
size needed in a within subject design.

While within-subject designs provide more power than between designs, they may not always be
appropriate for the particular experiment at hand. Charness et al. (2012) provide an overview of
the pros and cons of each design and the circumstances under which each may be appropriate.

Multiple treatments A between subjects study with multiple treatments puts additional constraints
on power. This is because the study would like to detect a separate effect for each treatment on the
outcome variable, and a sufficiently large group is needed to detect the effect of each treatment.

One way to maximize power with multiple treatment arms is by using an unbalanced design. This
implies that there is a different number of participants in each treatment arm. Many studies with
several treatments distribute the same number of subjects into each treatment group, because this
optimises power when variances are equal across groups. But if we can more precisely anticipate
the expected variance of the outcome for each treatment arm, then the number of participants as-
signed to each of the treatment arms and control group can be different.

To elaborate, we could at least expect the observations in the treatment arm(s) to exhibit more
variation than observations in the control group. In particular, we can assign few participants to
treatment arms in which we might expect a lower variance in the outcome variable. Thus, designs
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with equal sample sizes across all treatment and control groups require a larger sample size than is
optimal, because the highest variance across all treatment cells is (implicitly) assumed. List et al.
(2011) provide a derivation of power calculations for a treatment and control group with unequal
variances (their equations 6 and 7).9 Another promising area of research with regards to between
designs with multiple treatments are adaptive designs, in which more study participants are allo-
cated to promising treatment arms over time. See Finucane McKenzie et al. (2018) and Xiong et al.
(2019).

Multiple hypothesis testing Additional consideration must be taken if readers want to examine
power for multiple hypotheses. Power calculations should account for the number of hypothesis
tests that will be conducted on an outcome variable. As the number of hypothesis tests increases
the probability that one of them will be significant rapidly increases. After M independent tests,
the probability of making at least one type I error in M tests is 1− (1−α)M .10 Thus, after 50 tests,
and 5% significance, the probability of falsely rejecting the null is already 92%. There are two
paths to account for multiple testing: by adjusting the power calculations before the experiment,
or after the experiment by adjusting the Type I error rate.11 Our setup here focuses is on a single
outcome hypothesis test. For more on power under multiple hypotheses, see Lin et al. (2010), who
present methods for calculating sample size to detect a specified proportion of effects.

6 Computing power

Section 2 demonstrated the derivation of sample size or power for the most basic types of hypothe-
ses. For an overview of performing power calculations more generally see the Jameel Poverty Ac-
tion Lab’s (J-PAL) note on power calculations in the course “Evaluating Social Programs” (JPAL,
2014). Zhong (2009) and Ledolter (2013) also provide a number of numerical examples and deriva-
tions.

Most statistical programming languages offer packages that will compute sample size, given the
choice of α, β, µ0, µ1, and σ, as well as additional parameters such as the ratio of the sample size
between treatment to control groups. Stata includes the commands power,12 sampsi and sampclus.
Note, importantly, that Stata’s default output is framed in terms of composite tests H0 : θ = θ0

9We provide an example with multiple treatment arms and different variances in Section 6.
10P(Making an error) = P(reject H0|H0) = α; P(Not making an error) = P(not reject H0|H0);P(Not making an

error in m tests) = (1− α)m; P(Making at least 1 error in m tests) = 1 - (1− α)m.
11A Bonferroni correction accounts for multiple testing after the experiment is conducted at the hypothesis testing

stage. More recently, List et al. (2019) provide a new correction for multiple hypothesis testing that outperforms the
Bonferroni correction in terms of power.

12A one sample, two-sided sample size calculation with α = 0.05, 1− β = 0.8, µ0 − µ1 = 2 - 2.5 and σ = 0.8 is
power onemean 2 2.5, sd(0.8); A two sample, two-sided mean test where µ0 − µ1 = 12 - 15, σ0 = 5, σ1 = 7 and the
treatment groups is twice the control group is power twomeans 12 15, sd1(5) sd2(7) nratio(2)
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versus H1 : θ 6= θ0, but the command does require the user to specify a specific null and a specific
alternative. The two-sided aspect is reflected only in the critical value. To calculate power for a
range of alternatives, a power function is necessary, which Stata’s power command can produce
both in table and graph form for both one-sided and two sided tests. Open source languages such
as R and Python also have their respective power libraries.13

Another useful tool for power analysis is the J-PAL software Optimal Design (OD).14 OD exclu-
sively considers two-sided alternative hypotheses applied to designs with a single treatment and a
control and an even split of subjects in each group. The tool can produce graphs that depict the
trade-offs between any two chosen parameters. For example, the researcher may input an antic-
ipated effect size and standard deviations to generate a graph of power versus sample size. To
learn the coordinates of any given point on a graph, the user must click on the desired point. Stata
will also produce these graphs, but in OD they are the default output and very quick to generate.
However, unlike Stata, OD will not output a table of values.

OD has two design options that would be most useful to JESA readers, both are under the option
“person randomized trials.” These are single level trials (between subject design) and repeated mea-
sures (between subject design with multiple observations per person, or within design with only
one treatment). To use the single level trial feature is straight forward. To use the repeated mea-
sures feature, one would specify the frequency of observations (F), the duration of the study (D),
and the total number of observations per subject (M=FD + 1, where the 1 refers to a pre-treatment
observation). So with a within subject design with one control observation and 1 treatment, F = 1,
D = 1, M = (1 + 1). OD does not accommodate designs where each subject is subject to two or
more treatments.

In the way of non-normal distributions there are several considerations. Certain non-normal dis-
tributions may have closed form solutions for power calculations such as skewed distributions
(Cundill and Alexander, 2015) or chi-squared distributions (Guenther, 1977). However, for very
small samples where a specific distribution is not assumed, non-parametric tests are more appropri-
ate. Rahardja et al. (2009) and, more recently, Happ et al. (2019), provide closed form calculations
of power calculations for the Mann-Whitney U test.

Even with the many programs available, researchers may still face situations where closed form
solutions for sample size and power may not exist. In such cases simulation based power calcula-
tions can be a useful tool to overcome the weaknesses of programmed commands, and is common
among statisticians (van der Sluis et al., 2008). Essentially, the researcher generates k samples of
size n following the distribution specified under H0 and k samples of size n following the distri-

13For a comprehensive list of power packages see (Bellemare et al., 2016).
14The software is free and available here https://www.povertyactionlab.org/research-resources/software-and-tools.

The user guide has straightforward tutorials.
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bution specified under H1 and compares the two samples k times using their preferred statistical
test. β is the proportion of k tests that are not rejected, and power is 1− β.

Arnold et al. (2011) provide sample code for simulated power calculations in R and Stata where
their examples include calculations for cluster randomized trials and studies with two treatments
arms with different outcome variances. Two user written Stata packages also exist for simulat-
ing power calculations including Bellemare et al. (2016)’s powerBBK package, Luedicke (2013)’s
powersim package. Bellemare et al. (2016)’s package is remarkably versatile and can account for
experimental design, order effects, budget constraints, differences in variances across treatment
and control, multiple treatment arms, and panel data.15 We also provide a simple benchmark ex-
ample in the Appendix A using Monte Carlo simulations to calculate power in Python that can be
easily adjusted for other distributions, sample sizes, effect sizes, variances, and number of simula-
tions. The code defines the parameters for two distributions (n0, n1, α, µ0, µ1, σ0, σ1), reflecting
the distribution of each random sample that would be drawn from the treatment and control groups,
and the number of simulations. For each random draw from the treatment and control group, the
program calculates the mean difference between the groups and its related p-value on a standard
normal distribution. It then reports power, or the percentage of times where the null is rejected
across all simulations.

6.1 Choosing inputs for a power calculation

There are no strict rules for how to determine the values of µ0, µ1 and σ2 for power calculations.
Effect sizes and standard errors from studies that examine similar populations and treatments are
the most common source. Pilot studies or pre-intervention surveys can also be useful, but must be
considered carefully as these are often small sample exercises. For exploratory studies, researchers
may not know what absolute effect to expect, so discovering an effect of any size may be sufficient
to meet research goals. In that case, power should still be consulted, and calculated over a range
of effect sizes, to avoid overly conservative sample sizes. Authors can present plots of the power
function (power graphed against effect size) for a given sample size. This should be accompanied
by a discussion of how the researcher used the information to decide on a sample size.

When a specific expected effect is hard to determine, or when the researcher has limited control
over the sample size, it is useful to calculate the MDE, given assumptions about sample size, and
power. For example, the researcher can present the MDE under 90%, 80% and 70% power, and
discuss the conditions under which these MDEs are attainable. See, for example, Drichoutis et al.
(2015).

15A sample command for a study of t = 2 rounds, a budget ranging from 40 to 800 in 40 dollar increments per
round, a within design, an effect size of 0.1, where the baseline is 6.3, individual heterogeneity variance of 0.045, and
variance of the error term of 0.02 is: budget(40(40)800) t(2) design(both) beta(6.3 0.1) muvar(0.045) epsvar(0.02)
command(regress) panel rep(100)
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7 Conclusion

Using and reporting power in published articles is a practice economists conducting experiments
should adopt. In lieu of power calculations, experimental economists have tended to apply rules of
thumb (e.g. n>30) for determining sufficient sample sizes (List et al., 2011). Rules of thumb are
not without statistical underpinning (Berenson et al., 1988)[pg 227], but power calculations bring
to focus the importance of economically meaningful effect sizes and also shed light on how and
why a particular subject pool is attained.

We discuss many of the topics frequently brought up in experimental design and analysis that are
also related to power, including the fallacy of observed power, overstated effect sizes, publication
bias, the importance of reporting power for null effects, and replication.

Sharing details of power calculations will help the profession to develop accepted standards for
how inputs (i.e. standard error estimates) should be decided in the absence of empirically moti-
vated and context specific priors. We reiterate that the gains to calculating power outweigh the
(small) effort of using them over the rules-of-thumb that currently pervade the experimental liter-
ature.
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Bellemare, C., L. Bissonnette, and S. Kröger (2016). Simulating power of economic experiments:
the powerBBK package. Journal of the Economic Science Association 2(2), 157–168.

Benjamin, D., C. Camerer, and N. Vesterlund (2019). Panel discussion on research methods in
experimental economics. Experimental Science Association, Los Angeles, CA.

Benjamin, D. J., J. O. Berger, M. Johannesson, B. A. Nosek, E. Wagenmakers, R. Berk, K. A.
Bollen, B. Brembs, L. Brown, C. Camerer, D. Cesarini, C. D. Chambers, M. Clyde, T. D. Cook,
P. D. Boeck, Z. Dienes, A. Dreber, K. Easwaran, C. Efferson, E. Fehr, F. Fidler, A. P. Field,
M. Forster, E. I. George, R. Gonzalez, S. Goodman, E. Green, D. P. Green, A. Greenwald, J. D.
Hadfield, L. V. Hedges, L. Held, T. H. Ho, H. Hoijtink, D. J. Hruschka, K. Imai, G. Imbens,
J. P. A. Ioannidis, M. Jeon, J. H. Jones, M. Kirchler, D. Laibson, J. List, R. Little, A. Lupia,
E. Machery, S. E. Maxwell, M. Mccarthy, D. Moore, S. L. Morgan, M. Munafó, S. Nakagawa,
B. Nyhan, T. H. Parker, L. Pericchi, M. Perugini, J. Rouder, J. Rousseau, V. Savalei, F. D.
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Figure 1: Overstated Effect Size in Underpowered Studies

α = 0.5, Bα/2 = 1.96,β = 0.2, N = 100

Figure 2: Fallacy of Ex post Power
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A Appendix

Example: Simulation of Power Calculations

import numpy as np

import scipy.stats

# Set parameters
sample 0 = 30

sample 1 = 30

mean 0 = 0.0

effect size = 0.8

sigma 0 = 1

sigma 1 = 1

simulations = 10000

# Empty l i s t to store p values
p values = []

# Draw samples from a normal distribution
for i in range(simulations):

# Sample from control group
control = np.random.normal(loc = mean 0 , scale = sigma 0 , size = sample 0)

# Sample from treatment group
treatment = np.random.normal(loc = mean 0 + effect size , scale = sigma 1 , size = sample 1)

# ttest across control and treatment
result = scipy.stats.ttest ind(control, treatment)

# Store p value from test
p values.append(result[1])

# Number of simulations where the null was rejected
p values = np.array(p values)

reject = np.sum(p values < 0.05)

# Calculate percentage of times reject null
percent reject = reject / float(simulations)

print("Power: ", percent reject)

To alter the code to account for other distributions and statistical tests (e.g. non-parametric tests)
we would simply replace the np.random.normal() function with another sampling distribution (e.g.
np.random.chisquare()) and the scipy.stats.ttestind() function with another statistical test (e.g. such
as scipy.stats.mannwhitneyu()).
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