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Abstract 
This paper looks at the effects of air pollution on migration in China using changes in the average strength of 
thermal inversions over five-year periods as a source of exogenous variation for medium-run air pollution levels. 
Our findings suggest that air pollution is responsible for large changes in inflows and outflows of migration in 
China. Specifically, we find that a 10 percent increase in air pollution, holding everything else constant, is 
capable of reducing population through net outmigration by about 2.8 percent in a given county. We find that 
these inflows are primarily driven by well-educated people at the beginning of their professional careers, leading 
to substantial changes in the sociodemographic composition of the population and labor force of Chinese 
counties. We also find strong gender asymmetries in the response of mid-age adults that suggests families are 
splitting across counties to protect vulnerable members of the household. Our results are robust to different 
specifications, including a spatial lag model that accounts for localized migration spillovers and spatially 
correlated pollution shocks.  
	

Keywords: Air Pollution, migration, human capital, avoidance behaviour 

JEL Classification Number: O15; Q53; Q56; J24 

Contact details: Shuai Chen, Zhejiang University. 

Email: shuaichenyz@gmail.com 

Paulina Oliva, University of Southern California, BREAD and NBER. 

Email: olivaval@usc.edu  

Peng Zhang, The Hong Kong Polytechnic University. 

Email: peng.af.zhang@polyu.edu.hk 

 
 
We thank Hunt Allcott, Tamma Carleton, Olivier Deschênes, Andrew Foster, Joshua Graff Zivin, Peter Kuhn, 
Christopher Timmins, Catherine Wolfram, and Yanos Zylberberg; seminar participates at Beijing Institute of 
Technology, Guangzhou University, Lingnan University, Jinan University, Peking University, The Hong Kong 
Baptist University, The Hong Kong Polytechnic University, University of Pittsburgh, University of Texas at 
Austin, University of Washington, Xi’an Jiaotong University, and Zhejiang University; and conference 
participants at the 2018 China Meeting of the Econometric Society, the 11th China Economics Summer 
Institute, the 6th World Congress of Environmental and Resource Economists, the 2017 International 
Symposium on Contemporary Labor Economics, and the 16th Occasional Workshop in Environmental and 
Resource Economics for helpful comments. Jianghao Wang provided excellent research assistance. 
 
 
 
 
 
 
Working Paper No. 230       Prepared in July 2019 

The working paper series has been produced to stimulate debate on economic transition and development. 
Views presented are those of the authors and not necessarily of the EBRD. 



2 

1 Introduction 

      Air pollution has been shown to have causal impacts along an array of health and economic 

dimensions. A recent boom in the literature of air pollution has spurred a number of studies in 

economics that have used quasi-experimental methods to measure how short-run exposure to air 

pollution can impact infant and adult mortality, hospitalization rates, health expenditures, hours 

worked, labor productivity, labor market decisions, test scores, and mental health (Chay and 

Greenstone, 2003; Currie et al., 2009; Graff Zivin and Neidell, 2012; Hanna and Oliva, 2015; 

Arceo, Hanna, and Oliva, 2016; Borgschulte and Molitor, 2016; Deryugina et al., 2016; Schlenker 

and Walker, 2016; Deschenes, Greenstone, and Shapiro, 2017; Chen, Oliva, and Zhang, 2018). A 

few studies have also shed light on the effect of medium and long-run exposure to air pollution 

(Chen et al., 2013; Anderson, 2015; Ebenstein et al., 2017) as well as long-run impacts of in-utero 

exposure (Adhvaryu et al., 2016; Molina, 2016; Isen, Rossin-Slater, and Walker, 2017). Many of 

these studies have been done in middle-income countries, in some of which air pollution is now 

considered the biggest environmental risk to human health.  

Taken together, these results suggest that the total cost of air pollution is quite large as a share 

of income per-capita, although a formal aggregation exercise is difficult due to differences in 

context, methodologies, and pollutant measures across studies.1 Some studies have estimated the 

marginal willingness to pay (MWTP) to avoid air pollution for the U.S. through hedonic methods 

(Chay and Greenstone, 2005). Given that individuals are free to move across locations, and 

therefore house values capitalize local amenities, this measure is likely to reflect all costs of air 

pollution that are known to individuals (Roback, 1982; Sanders et al., 2011). Costs associated with 

                                                 
1 An aggregation of impacts across studies has been done for the economic cost of carbon emissions (Hsiang 

et al., 2017). 
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re-location might cause hedonic estimates to deviate from the willingness to pay for air pollution 

(Bayer, Keohane, and Timmins, 2009). In addition, housing markets and location decisions in the 

developing world are often distorted by market failures and regulation, causing further departures 

from the assumptions underlying hedonic methods. This is especially salient in China, where 

migration decisions have been heavily constrained by the household registration (hukou) system 

(Kinnan, Wang, and Wang, 2016). However, the perception of air pollution costs is still likely to 

be reflected in the key economic decisions behind hedonic methods: re-location and migration.  

Studying how migration decisions are affected by pollution in the developing world offers us 

a window to the scope of the air-pollution costs that are internalized by the population through 

semi-permanent adaptation measures. Also, zooming into the demographic composition of these 

flows helps us understand how the willingness to pay for air pollution might differ across socio-

economic groups and how pollution-related migration can change the composition of the labor 

force across cities (Hanlon, 2016; Heblich, Trew, and Yanos, 2016). Our results also contribute to 

a sizable literature that has been devoted to the factors that determine migration decisions (Borjas, 

1999, 2015). In this literature, the emphasis has been placed on traditional economic factors, such 

as income, wages, and networks (Clark, Hatton, and Williamson, 2007; Pedersen, Pytlikova, and 

Smith, 2008; Kinnan, Wang, and Wang, 2016). Although recent literature has paid more attention 

to environmental factors, most of these studies focus on weather (Feng, Krueger, and Oppenheimer, 

2010; Feng, Oppenheimer, and Schlenker, 2015; Cai et al., 2016; Jessoe, Manning, and Taylor, 

2018). As our results show, migration flows related to air pollution are of similar magnitude to 

those projected based on plausible climate change scenarios (Feng, Oppenheimer, and Schlenker, 

2015).  

To our best knowledge, we are the first to estimate the causal effect of air pollution on migration 

flows. The empirical challenges associated with studying migration responses to air pollution are 
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two. First, as migration is a complicated and costly process, it is likely to respond slowly (over a 

number of months or even years) to air pollution exposure. Thus, the empirical challenges of 

estimating the causal effects of air pollution on migration are similar to the challenges of estimating 

any medium to long-run impacts of air pollution: exogenous cross-sectional or mid-run variation 

in air pollution is hard to come by. In its absence, estimates are prone to be confounded by 

unmeasured joint determinants of air pollution and migration. For example, economic activity, 

which has been shown to attract immigrants (Borjas, 1999; Clark, Hatton, and Williamson, 2007), 

is also highly correlated with air pollution. Thus, as we demonstrate in this paper, an OLS 

regression of migration on air pollution yields a coefficient that could be (wrongly) interpreted as 

pollution attracting immigrants. The second challenge has to do with data constraints when 

studying migration decisions. Data that can track individual’s locations over time is hard to come 

by at the scale that would be required to pick up responses of migration to air pollution. 

Our approach to overcoming the first empirical challenge is to use five-year variation in the 

average strength of thermal inversions within counties. Thermal inversions have been used to study 

short-run effects of air pollution on infant and adult mortality (Jans, Johansson, and Nilsson, 2014; 

Hicks, Marsh, and Oliva, 2015; Arceo, Hanna, and Oliva, 2016), labor productivity (Fu, Viard, and 

Zhang, 2017), and mental health (Chen, Oliva, and Zhang, 2018). In relatively short periods of 

time and over small regions, thermal inversions cannot be used to study mid-run impacts of air 

pollution as the patterns within valleys are relatively stable (Hicks, Marsh, and Oliva, 2015). 

However, thermal inversion patterns do change slowly over a number of years and these changes 

can be different across regions of a large country such as China. For example, we find that many 

provinces in China experience differences of up to 150 thermal inversions across the three different 

five-year periods that we observe. Importantly, some regions may see thermal inversions 

increasing over time, both in terms of its frequency and average strength, while others may see 
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reductions in the counts and average strength of thermal inversions. Thus, the sheer size and 

regional diversity in China allows us to use longitudinal variation in the strength and frequency of 

thermal inversions as an instrument for air pollution to explore responses of mid-term outcomes 

such as migration. Although this source of variation in air pollution is certainly not permanent, 

decomposing the rapid changes in air pollution into permanent and transitory is impossible without 

a weather model. Thus, as our evidence on the response to these shocks suggests, individuals 

update their beliefs about local air pollution using medium-run changes in air pollution 

concentration regardless of their source.  

We overcome the second challenge, the data constraints on migration decisions, by integrating 

aggregated and individual-level information from the Population Census in China in order to 

construct five-year flows of migration at the county level between 1995 and 2010. Using census 

questions that are common across all census rounds, we are able to construct two separate measures 

of migration flows at the county level: net-outmigration and un-registered (floating) immigration. 

Another innovation of our paper is the use of satellite-based particulate matter with a diameter 

of less than 2.5 μm (PM2.5) in economics. Although satellite-based proxies for air pollution have 

been used in the past (Kumar et al., 2011), it is not until recently that PM2.5 model-based measures 

that incorporate Aerosol Optical Depth (AOD) measures and also historical analysis of the 

hydrological cycle as inputs, have been successfully validated vs. ground monitors in the 

atmospheric literature (Buchard et al., 2016).2 This allows us to fully exploit the wide availability 

of thermal inversions data (also from re-analysis models) for remote as well as urban areas in China 

without compromising the interpretability of our results.  

                                                 
2 Although satellite-based AOD measures are only available from 2000 on, the MERRA-2 product that we use 
for this paper also incorporates AOD measures from Advanced Very High Resolution Radiometer (AVHRR) as 
inputs, which are available for the previous decade. 
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Our findings suggest that air pollution is responsible for large changes in inflows and outflows 

of migration in China. Specifically, we find that changes in air pollution that are independent across 

counties lead to changes in population at a rate of 2.8 percent reduction per 10 percent increase in 

air pollution. Of this change, about half corresponds to reduced immigration by floating migrants 

(which constitutes the bulk of the migration observed in our data). We find that these migration 

responses are primarily driven by well-educated people at the beginning of their professional 

careers, leading to substantial changes in the sociodemographic composition of the population and 

labor force of Chinese counties. We also find that females between 30 and 45 years of age, but not 

men, migrate in response to air pollution at a rate of 5.8 percent of the population per 10 increase 

in air pollution (twice as much as the average adult). The differential response by gender in this 

cohort is consistent with families living apart in order to protect young children. Our results are 

robust to different specifications, including a spatial lag model that allows for spillovers and spatial 

correlation, simple counts of inversions as instruments, different weather controls, and different 

forms of error variance.  

The rest of the paper is organized as follows. Section 2 is a background section that describes 

migration regulations in China as well as the literature on pollution and decision making around 

pollution in the context of China. Section 3 discusses our empirical strategy as well as our data. 

Section 4 presents our results and Section 5 discusses the significance of our findings. 

2 Empirical Background 

2.1 Migration and Household Registration System in China 

      Migration typically refers to the permanent or long-term changes of the place of residence. 

Unlike other countries in which people can usually migrate freely, China implements the 
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Household Registration System (HRS), the so-called hukou system. The hukou system keeps a 

record of legal address and family relations for every citizen from birth to death. Furthermore, it 

divides people into rural and urban citizens according to their parents or the place of birth, and 

those in the cities usually enjoy privileges of local employment, education, health care, and social 

welfare. There are certain requirements for changing registered residence, such as owning a 

permanent house in the area where a person has migrated to, having a stable occupation and stable 

income, and having good education and talents.3  

Therefore, there are two types of migrants in China. The first type is the floating population, 

which indicates migrants who move to the destination but with their hukou at the origin. The second 

type is the registered migrants who move the destination along with their hukou. In this paper, we 

have two measurements of migration. The first is an approximate net outmigration ratio over five 

years. Typically, the net outmigration ratio is defined as the percent of population leaving the 

county net of new arrivals and deaths within a given period (Passel, Van Hook, and Bean, 2004; 

Feng, Krueger, and Oppenheimer, 2010; Feng, Oppenheimer, and Schlenker, 2015). However, 

reliable data on deaths at the county level are not available for every year in China. Thus, we 

calculate outmigration ratios without subtracting deaths and subtracting approximate deaths.4 The 

population in this measure is based on the physical presence of each individual in that county, and 

thus this measure has the advantage of including both floating and official migrants. The second 

measurement of migration flows we use is the destination-based floating immigration, or those 

who are surveyed away from their hukou. Studying this measure of migration has multiple purposes: 

it allows us to check for the pull effect of air quality, i.e., whether individuals pay attention to 

                                                 
3 See http://www.gov.cn/xinwen/2014-07/30/content_2727331.htm (in Chinese). 
4 Note that deaths themselves may be affected by air pollution. Thus, it is important to document the extent of 

this effect for the population we study in order to ensure that our estimates are not affected by this necessary 
omission. We discuss this at length in Section 3.2. 

http://www.gov.cn/xinwen/2014-07/30/content_2727331.htm
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recent pollution levels at their destination, which is informative about the level of sophistication in 

an individual’s moving decisions. Second, it serves as a one of the checks we perform on our net 

outmigration specification given that we can only net out approximate deaths. Third, it helps 

understand whether migration flows that respond to air pollution are solely driven by official 

migrants (i.e., those that officially change their hukou) or are also driven by floating migrants.  

Figure 1 depicts the migration patterns for each county in China over the period 1996-2010. In 

Panel A, migration is measured by net outmigration ratio, which is defined as the percent of 

population leaving the county net of new arrivals and deaths. Positive net outmigration ratio, 

labelled in yellow, means that on net people leave that county. On the contrary, negative net 

outmigration ratio, labelled in blue, means that on net people move to that county. In general, the 

metropolitan areas especially three economic regions in China – the Yangtze River Delta (Shanghai, 

Jiangsu, and Zhejiang), the Pearl River Delta (Guangdong), and the Jing-Jin-Ji Area (Beijing, 

Tianjin, and Hebei) and other coastal areas – attract a large share of migrants. There are a few 

exceptions to this pattern in the northwest (the Xinjiang Uyghur Autonomous Region, Qinghai, 

Gansu, and the Inner Mongolia Autonomous Region) and the Tibet Autonomous Region, where 

income is lower but migrants are still drawn in potentially due to abundant natural resources and 

the China Western Development policy. Additional reason that these regions have large net 

outmigration ratio is that population (the denominator) in these areas are small. Panel B shows the 

destination-based immigration ratio, which is defined as the percent of population entering the 

county with their hukou in the origin, in the same period. Light blue means low immigration ratio 

while dark blue means high immigration ratio. In general, one can observe a similar pattern as 

shown in Panel A: economic developed regions attract a significant share of the migrants.  
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2.2 Air Pollution in China and Avoidance Behavior 

      Over the past decades, air quality has increasingly deteriorated in China, causing increasing 

concern on China’s public health and economic development (Ebenstein et al., 2015). Figure 2 

plots the county-average concentrations measured in microgram per cubic meter (μg/m3) of PM2.5 

in Panel A in China in each year over the period 1980-2015. Two red vertical lines highlight our 

study period: 1996-2010. The blue vertical line indicates the year of 2001, when China joined the 

World Trade Organization (WTO). 

The concentrations of PM2.5 have significantly increased over the period, in particular after 

2001, when China became the world’s factory. In 2015, the average concentration is 66.90 μg/m3, 

which is nearly 7 times higher than the standard of 10 μg/m3 of annual mean recommended by the 

WHO (WHO, 2005).   

In recent years, the particular matter (PM) has become a major environmental concern in China. 

On September 10th, 2013, the State Council has issued the “Air Pollution Prevention and Control 

Action Plan”, which is regarded as the most aggressive and ambitious air quality management 

action plan in the history of China.5 The plan aims at reducing air pollution. Specifically, by 2017 

the urban concentration of particulate matter with a diameter of less than 10 μm (PM10) shall 

decrease by 10% compared with 2012. Concentration of PM2.5 in the Jing-Jin-Ji Area, Yangtze 

River Delta, and Pearl River Delta region shall respectively fall by around 25%, 20%, and 15%.  

Even though most regions in China experienced increases in pollution between 1996 and 2010, 

regional policy differences as well as differences in meteorological conditions led to substantial 

heterogeneity in pollution changes over time. Figure 3 shows a map of local changes in pollution. 

As in our estimation we will be controlling for nation-wide changes as well as county fixed effects, 

                                                 
5 http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm 

http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm
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this map is helpful to illustrate that there is a considerable amount of remaining variation in 

pollution. Out of this remaining variation, our IV strategy will ensure that we only use the one due 

to local variation in thermal inversion strength.  

A large literature in both epidemiology and economics has documented important effects of air 

pollution on human health (see a review in Graff Zivin and Neidell (2013)). PM2.5 can penetrate 

the thoracic region of the respiratory system, and cause the respiratory and cardiovascular diseases 

in the short term (hours and days). The long-term (months and years) exposure can increase 

mortality from both cardiovascular and respiratory diseases as well as from lung cancer (WHO, 

2013). The short and long-run effects of PM2.5 on human health have been well documented in 

various studies (Dockery et al., 1993; Pope III and Dockery, 2006; EPA, 2009; Deryugina et al., 

2016).  

Concerns about air pollution in China and elsewhere have been shown to motivate changes in 

behavior. Several studies have demonstrated that people engage in short-run avoidance behaviors 

such as staying indoors (Neidell, 2009) or purchasing particulate-filtering facemasks (Zhang and 

Mu, 2016) in a highly polluted day. Recent research has also shown that pollution concentrations 

can motivate medium-run investments such as home air purifiers (Ito and Zhang, 2016). 

Importantly, theory suggests that utility maximizing households will choose their avoidance 

behavior portfolio optimally such that marginal cost across all costly protective strategies is 

equalized across them and, in equilibrium, it is equal to their marginal benefit. Thus, migration 

decisions should be reflective of the cost families are willing to exert to avoid air pollution, and 

thus the marginal benefit of reducing it. 
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3 Empirical Strategy and Data 

      The goal of our empirical estimation is to capture the causal effect of mid-term pollution on 

migration. There are two important challenges in doing this. First, air pollution and economic 

activity are highly correlated. Thus, it is likely that those cities with high economic activity that 

attract immigrants by offering highly paid jobs are also those experience high levels of air pollution. 

In fact, as we discuss in the results section, if one looks at the simple correlation between air 

pollution and immigration they appear positively correlated over time even when controlling for 

county fixed effects. These results should not be interpreted as air pollution attracting immigrants, 

as time-varying confounding factors (including economic activity) could be driving the correlation. 

Second, overcoming the first challenge requires finding a random source of variation for air 

pollution. However, most reliably exogenous determinants of air pollution in the literature provide 

short-run variation in air pollution (over the course of days, weeks, or months). Migration, however, 

is an outcome that is likely to respond slowly to air pollution as it is akin to an investment decision 

that is difficult to reverse and very costly. Thus, we expect individuals to react slowly to perceive 

permanent changes in air pollution, and importantly, to react to changes that are observable over 

long periods. Most sources of long-run variation in air pollution, such as changes in local policy or 

economic fluctuations in neighboring regions, are likely to have independent effects on migration 

as they may shift labor market conditions. The combination of these two issues pose an important 

challenge for identification as sources of permanent variation in air pollution that is not correlated 

with other sociodemographic or economic patterns are hard to find.  

Our approach to overcoming this challenge is to use medium-run random variation in air 

pollution stemming from five-year fluctuations in the strength of thermal inversions in a given 

county. Thermal inversions are a common meteorological phenomenon that leads to higher 
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concentrations of pollutants near the ground. The mechanism through which this occurs is the 

following: under normal conditions temperature decreases as altitude increases. Since air moves 

from hot to cool regions, air pollutants can circulate vertically decreasing air pollution 

concentrations near the ground. However, under certain meteorological circumstances (see Arceo, 

Hanna, and Oliva (2016)), the temperature of a layer of air above ground could be higher than that 

at lower altitudes, which leads to an inversion in the temperature/height gradient or thermal 

inversion. When this occurs, air pollutants are trapped near the ground leading to higher air 

pollution concentrations.  

The idea to use thermal inversion as an instrumental variable for air pollution was first proposed 

by Arceo, Hanna, and Oliva (2016), to estimate the effect of air pollution on infant mortality in 

Mexico City. This identification strategy has been subsequently used to explore the short-run 

effects of air pollution on children’s health in Sweden (Jans, Johansson, and Nilsson, 2014) and on 

adult mortality in the United States (Hicks, Marsh, and Oliva, 2015) and on manufacturing labor 

productivity (Fu, Viard, and Zhang, 2017) and mental health in China (Chen, Oliva, and Zhang, 

2018). This is, however, the first study that uses thermal inversions to produce medium-run 

variation in air pollution by aggregating counts and computing average strength of inversions over 

five year periods. Although the variation in air pollution stemming from thermal inversions 

eventually reverts to the mean (i.e. does not generate permanent changes in air pollution), 

decomposing the rapid changes in air pollution into permanent and transitory is impossible without 

a weather model. Thus, for the casual observer, medium-run changes in air pollution are likely 

used to update beliefs about the air pollution in the area going forward regardless of their source. 

Figure 4 illustrates the different sources of variation in air pollution. The hypothetical figure 

distinguishes between changes in air pollution generated by factors other than thermal inversions 

(solid dark lines) and all changes in air pollution (solid light lines) in two different counties. The 
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difference between each pair of solid lines corresponds to the changes generated exclusively by 

thermal inversions. The casual observer can only keep track of the light lines, which contain all 

sources of changes in air pollution. Note that there is no public information on which share of the 

observed air pollution is generated by a transitory meteorological factors and which share is 

permanent. Hence, it is likely that after observing an inversion driven concentration change like 

the one highlighted in the graph, the observer will update her air pollution expectation (see dashed 

lines) even if the change is transitory.  

The source of variation in air pollution that we use is also relevant for the interpretation of the 

magnitude of the results. Note that the thermal-inversion-related air pollution shocks that each 

county experiences are independent across counties. In fact, we test for independence of these 

shocks using a spatial lag model (discussed in Section 4.3 and in the Online Appendix Tables A2-

A4). Thus, the effect we find can be interpreted as the migration response to a pollution shock in 

one county, everything else equal (i.e., keeping pollution constant everywhere else). In reality, the 

bulk of pollution changes were in the form of long-run permanent trends that were highly correlated 

across counties. Thus, our estimates are only applicable to the share of variation in pollution that 

was independent across counties. Although this is a small share of the variation, it is likely that 

these uncorrelated changes produced the most movement, as they generated starker trade-offs 

between locations. Because our estimates correspond to responses to uncorrelated changes in 

pollution, it is important to keep in mind that multiplying our estimated response by the total 

change in air pollution that occurred in a given county over any given period will produce an 

overestimate of the migration flow in response to that total change.  Therefore, we refrain from 

extrapolating our results to computing the migration response to total changes in air pollution 

occurred in the period of our study. 
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3.1 Econometric Model 

      To estimate the causal effect of air pollution on migration, we propose to estimate the following 

2SLS model  

                                              𝑀𝑐𝑡 = 𝛽0 + 𝛽1𝑃𝑐𝑡 + 𝑓(𝑾𝑐𝑡) + 𝛾𝑐 + 𝜎𝑡 + 𝜀𝑐𝑡                                 (1) 

                                             𝑃𝑐𝑡 = 𝛼0 + 𝛼1𝑇𝐼𝑐𝑡 + 𝑓(𝑾𝑐𝑡) + 𝛾𝑐 + 𝜎𝑡 + 𝜇𝑐𝑡,                                (2) 

where 𝑀𝑐𝑡 denotes two measures of migration in county 𝑐 and period 𝑡: the net outmigration ratio, 

which is the fraction of people leaving a county minus new arrivals and deaths, and destination-

based immigration ratio, which is the fraction of people entering a county but with their hukou in 

the origin. We define each period as a five-year interval. Thus, we have three periods in our study: 

1996-2000 (period one), 2001-2005 (period two), and 2006-2010 (period three).  

𝑃𝑐𝑡 , measures the 5-year average concentration of PM2.5, and we treat it as endogenous. 

Equation (2) shows the first stage of our empirical strategy. We instrument air pollution with the 

average strength of thermal inversions over each five-year period, 𝑇𝐼𝑐𝑡, conditional on flexible 

functions of weather variables (𝑾𝑐𝑡 ), county fixed effects (𝛾𝑐) , and period fixed effects 𝜎𝑡 . 

Thermal inversion strength is defined using above-ground temperature minus ground temperature. 

A positive difference indicates the existence of a thermal inversion and the magnitude measures 

the inversion strength. A negative difference indicates the non-existence of a thermal inversion. 

We keep the positive difference and truncate the negative difference to zero within each six-hour 

period. The strength measures of individual inversions are then averaged from six-hour to five-

year period. In Section 3.2, we provide a detailed description of the source of information for 

thermal inversions as well as migration and pollution measures.  

      As argued above, thermal inversions generate county-level variation in air pollution 

concentrations that is independent of structural sources of air pollution, including economic 
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development. To illustrate the lack of correlation between thermal inversions and country-wide 

changes in air pollution, Panel A in Figure 2 plots the county-average strength of thermal inversions 

in Celsius degrees (°C) in China over the period 1980-2015 along with PM2.5 levels.6 In contrast 

to air pollutants, there is no steep change in thermal inversion strength. This is especially important 

after 2001, when the steep increase in PM2.5 was tied to rapid economic growth, as shown in Panel 

B of Figure 2. Thus, this figure backs up the exogeneity assumption of our instrumental variable 

with respect pollution sources associated with economic activity. 7 Nevertheless, to be overly 

cautious about spurious correlations between air pollution and thermal inversions over time, we 

include period fixed effects, 𝜎𝑡, in all our specifications.8  

There are a couple of additional considerations about thermal inversions that are relevant for 

identification. First, although there is no plausible direct mechanism through which temperature 

above ground level could affect human health or human behavior, thermal inversions often 

coincide with weather patterns on ground level, and weather may have direct impacts on our 

outcome of interest (Feng, Krueger, and Oppenheimer, 2010; Feng, Oppenheimer, and Schlenker, 

2015; Cai et al., 2016). To illustrate the relationship between thermal inversions and weather, Panel 

A of Figure A2 in the Online Appendix shows that the national average of thermal inversion 

strength (solid line) is highest during very cold days. However, mild and very hot temperatures are 

also associated with strong thermal inversions. This national pattern, however, masks large 

variation in the relationship between thermal inversions and temperature across regions. To show 

this variation, Panels B, C, and D of the same figure show the nonlinear relationship between 

                                                 
6 See paragraph below for the definition of thermal inversion strength. 
7 We also plot the time trend of PM2.5, thermal inversions, and GDP for three major cities in China: Beijing, 

Shanghai, and Guangzhou in Figure A1 of the Online Appendix. These figures show that, although spikes of air 
pollution sometimes coincide with spikes in inversion strength, there are no local trends in inversions that 
coincide with the broad direction of economic growth and air pollution. 

8 Our results are robust to the exclusion of period fixed effects, and as we show in the robustness section, to the 
inclusion of region specific period fixed effects. 
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temperature and inversion strength for Beijing, Shanghai, and Guangzhou, respectively. The 

regional variation in the inversion-temperature relationship stems from differences in the 

underlying nature of thermal inversions across regions. Strong thermal inversions during cold 

months are common in regions where inversions are predominantly radiative. Radiative inversions 

emerge when the effect of earth’s warmth radiation on air near the ground causes large differences 

with air at higher altitudes. Other sources of thermal inversions (subsidence and advection) can 

cause thermal inversions in warmer months.  

To address confounding issues stemming from the relationship between thermal inversions and 

weather, we control for very flexible functions of an array of weather measures at the ground level 

including 1 °C daily temperature bins, and second-degree polynomials in precipitation, sunshine 

duration, relative humidity, and wind speed.9 Our identification strategy thus relies on the variation 

in the five-year average strength of thermal inversions net of weather variation at ground level.  

Second, there are some regions that are more prone to thermal inversions than others, which 

causes permanent differences in air pollution concentrations across regions. Figure A3 in the 

Online Appendix depicts the annual average concentration of PM2.5 over 1980-2015 for three 

categories of counties: counties with inversion strength less than 0.08 °C (in circle), between 0.08 

and 0.24 °C (in square), and above 0.24 °C (in triangle). These thresholds were defined based on 

the 33rd and 66th percentile respectively. In general, air pollution is higher in counties with higher 

strength of thermal inversions. The average concentration of PM2.5 for counties with less than 

0.08 °C is 38.2 μg/m3, while is 50.0 μg/m3 and 56.9 μg/m3 for counties with 0.08-0.24 °C and 

above 0.24 °C strength, respectively. These permanent differences in air pollution may induce self-

selection patterns across regions that could potentially result in differences in migration rates. For 

                                                 
9 We also explore the sensitivity of our results to variations in the functional forms of weather variables such as 

region-specific temperature effects. 
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example, if only healthy young adults are willing to live in highly polluted areas and young adults 

are more prone to relocating in response to good job opportunities, we could potentially observe 

that areas with a high average strength of thermal inversions have high migration rates. Thus, it is 

important for us to control for time-fixed differences in air pollution through county fixed effects. 

By doing so, we constrain the inversion-related variation in air pollution to deviations from the 

within-county average strength of thermal inversions over the course of fifteen years.  

Figure 5 contrasts the cross-sectional variation with the within-county variation we are using 

in a map. While the map in Panel A shows the wide-spread geographic variation in average strength 

of thermal inversions (which are absorbed by our county fixed effects), Panel B shows that there 

is also a substantial amount of within-county variation in our period of study. More specifically, 

Panel B shows the difference between the minimum and maximum 5-year average strength of 

inversions in the 15-year period of our study for every county. There are many counties distributed 

over all regions of China that had differences over time that are equivalent to a quarter of the overall 

standard deviation in our measure of thermal inversions (darkest shade in the graph). 

Finally, we discuss two spatial considerations when using thermal inversions as a county-level 

instrument: spillovers and spatial correlation. First, a “treated county” (a county that experiences 

an abnormally strong spell of thermal inversions in a five-year period) could have a spillover 

effects over neighboring counties if the bulk of the migration in response to the pollution shock in 

question goes to a small number of nearby counties. If this were the case, our estimates of the 

response to an independent pollution shock would be biased as some of the neighboring counties 

would in fact have some form of treatment. Second, assuming that the thermal inversion shocks 

are independent across space might be problematic as neighboring counties might share 

geographies and weather realizations that could make them similarly susceptible to a thermal 

inversion shock at a given time. To address these concerns, we (a) estimate a spatial lag model, 
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where we explicitly account for shocks to nearby counties in the estimation, and (b) explore several 

standard error structures that can account for spatial correlation. In addition, we use population 

weights to correct for heteroscedasticity, as large population differences across counties will lead 

to differences in the precision of calculated migration rates.  

3.2 Data Sources and Summary Statistics 

3.2.1 Migration 

      As discussed in Section 2.1, there are two types of migrants in China: those who migrate to a 

new county but do not possess the local household registration, and those who migrate and possess 

the local household registration. The first type is referred as floating population or floating 

migration, while the second is regarded as registered migrants.  

We use population and death counts from the population census in China to calculate two 

measures of migration: net outmigration flows of all types of migration and immigration flows of 

floating migrants. Since 1990, China has conducted decennial population census in 1990, 2000, 

and 2010, and the 1% population sample survey in 1995, 2005, and 2015. For our study, we use 

1% and 20% individual-level data randomly drawn from the 2000 and 2005 censuses respectively, 

and county-aggregated data in 1995 and 2010 from National Bureau of Statistics (NBS) of China.10 

The first migration measure, the net outmigration ratio, is the percent of population leaving the 

county net of new arrivals and deaths. Since the population herein is based on individual’s physical 

presence in that county, the net outmigration ratio essentially measures the migration of both 

floating and registered migrants. We use the residual approach to calculate net outmigration. The 

residual approach has been widely used in the previous literature (e.g., see Passel, Van Hook, and 

                                                 
10 To the best of our knowledge, no individual-level census data in 1995 and 2010 are publicly available. 
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Bean (2004); Feng, Krueger, and Oppenheimer (2010); Feng, Oppenheimer, and Schlenker (2015)). 

In particular, we calculate the net outmigration ratio for people aged between 15 to 60, the bulk of 

the working force, during each five-year interval using the following equation:  

                        𝑁𝑒𝑡𝑂𝑢𝑡𝑚𝑖𝑔[15,60]𝑐𝑡 = 𝑃𝑜𝑝[15,60]𝑐𝑡−𝑃𝑜𝑝[20,65]𝑐,𝑡+5−𝐷[15,60]̂  
𝑃𝑜𝑝[15,60]𝑐,𝑡

× 100%,                 (3) 

where 𝑁𝑒𝑡𝑂𝑢𝑡𝑚𝑖𝑔𝑐,𝑡 is the net outmigration ratio for those aged [15, 60] during the five-year 

interval starting from year 𝑡 in county 𝑐; 𝑃𝑜𝑝[15,60]𝑐,𝑡 indicates the total population aged [15, 60] 

in county 𝑐 at the beginning of the five-year interval that started in year 𝑡, while 𝑃𝑜𝑝[20,65]𝑐,𝑡+5 

denotes the population of the same cohort five years later, and 𝐷[15,60]̂  represents an approximate 

measure of deaths for the same population during the five-year interval. Below we explain the data 

constraints on deaths and our approach to ensure that these constraints do not affect our results. 

Because NBS only surveys deaths during the survey year, we are not able to obtain the death 

counts in the whole five-year period. Thus, we compute an approximate net outmigration ratio in 

two ways. The first way omits deaths from calculation in Equation (1). The second way 

approximates deaths in the five-year period by multiplying deaths in the last year by five. Either 

option, omitting or only partially accounting for deaths in the five-year period, creates 

measurement error of net outmigration ratio and will bias our estimates upwards if pollution is 

positively correlated with death counts. In order to evaluate the potential bias, we estimate the 

effect of air pollution on deaths for different age groups using the years for which deaths data are 

available (2000, 2005, and 2010). In order to do so, we estimate model in Equations (1) and (2), 

with deaths in each of these years as the dependent variable and pollution in current year, past two 

to five years as the right hand side variable of interest. Results of this specification are shown in 

Table A1 in the Online Appendix. Each column reports results on a different age group. We find 
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that air pollution exposure within the last four and five years has a positive and significant effect 

on current year deaths of total population (all ages), population under 15 years of age, and 

population above 60 years of age. However, we find that deaths among our population of interest, 

those between 15 and 60 years of age, show a small and statistically insignificant response to air 

pollution. These findings across age groups are consistent with prior literature on the effects of air 

pollution by age groups (Chen et al. (2013); Deryugina et al. (2016)). These results suggest that 

the bias caused by the measurement error in our imperfect net outmigration measures should be 

minimal and statistically undetectable.  

Table 1 reports mean and standard deviation of our two net outmigration ratio measures. The 

difference between the adjusted and unadjusted measures coincides with our approximate measure 

of deaths. The mean five-year death rate in our period is 1.28 per thousand, also reported in Table 

1. On average, the net outmigration ratio is negative (both adjusted and unadjusted). As this ratio 

is expressed as an average of unweighted percentages at the county level, the mean net 

outmigration can be either positive or negative. The negative sign likely means that less populated 

counties, which are also more numerous, are predominantly experiencing net inflows. This could 

be due to the urbanization policy and the economic development of several economic zones such 

as the Yangtze River and Pearl River Deltas. The large standard deviation of the net outmigration 

ratio shows that there is substantial heterogeneity in migration flows across counties. This is also 

clear from Panel A in Figure 6, which depicts the histogram of the net outmigration ratio with death 

adjustment. Although average net changes in population are modest, five percent of counties may 

experience increases of 40 percent in population stemming from migration flows (negative tail of 

the net outmigration ratio histogram). 

Our second measurement on migration is destination-based immigrants whose hukou are in 

their origins, or floating migration. This excludes those immigrants who also transfer their hukou 
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to the destination (registered migration). From previous work on Chinese migration (Ebenstein and 

Zhao, 2015) and from our calculations, we know that about 70 percent of migrants constitute 

floating migrants.11 Since the majority of migrants do not transfer their hukou, our destination-

based immigration captures the bulk of the response to air pollution. Our destination-based 

immigration measure is calculated from individual-level census in 2000 and 2005, and county-

level aggregated census in 2010. The details are available in the Online Appendix. We cannot 

calculate origin-based outmigrants because the aggregated data in 2010 only report the destination-

based immigrants. From Table 1, we can also observe an increasing trend in destination-based 

floating immigration during the period of our study.  

3.2.2 Air Pollution 

      The data on air pollution are derived from the satellite-based AOD retrievals. This technique 

is particularly popular for estimating air pollutants in areas lacking ground-level measurements 

(van Donkelaar et al., 2010). AOD essentially measures the amount of sunshine duration that are 

absorbed, reflected, and scattered by the particulates suspended in the air, and can be used to 

estimate particular matter concentrations. The AOD-based pollution data closely match the 

ground-based monitoring station measures (Gupta et al., 2006; Kumar et al., 2011).  

We obtain the AOD data from the product M2TMNXAER version 5.12.4 from the Modern-

Era Retrospective analysis for Research and Applications version 2 (MERRA-2) released by the 

National Aeronautics and Space Administration (NASA) of the U.S.12 The data are reported at 

each 0.5 degree × 0.625 degree (around 50 km × 60 km) latitude by longitude grid in each month 

since 1980. The concentration of PM2.5 is calculated following Buchard et al. (2016). The monthly 

                                                 
11 Our calculation comes from the 2000 Census, which has information on both floating and registered migration. 
12 The data can be downloaded at https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary.  

https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary
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pollution data are then aggregated from grid to county. We then average to annual level across all 

months and further average to each five-year period for each county.  

We do not use the air pollution data from ground-based monitoring stations for four reasons. 

First, the publicly available data which are provided by the China National Environmental 

Monitoring Center (CNEMC) of the Ministry of Environmental Protection of China were only 

reported starting from June of 2000, while our study period starts from 1996. Second, the spatial 

coverage is quite sparse. It only covered 42 cities in 2000 and 86 cities in 2010, while AOD-based 

data cover the whole country. Third, the ground-based pollution data only report Air Pollution 

Index (API), which is a piece-wise linear transformations of three air pollutants (PM10, SO2, and 

NO2), and thus we cannot explore the effect of specific air pollutant, especially PM2.5. Lastly, it is 

found that ground-based air pollution data have been manipulated (Ghanem and Zhang, 2014).  

Though previous studies have shown that AOD-based pollution data can predict air quality 

(Gupta et al., 2006; Kumar et al., 2011), we still compare our AOD-based data with ground-based 

data during the period 2013-2015, when CNEMC and US Embassy started to report hourly 

concentration specific air pollutants and manipulation is not a major concern13 . We find no 

statistical difference between them conditional on county fixed effects. The details are discussed 

in the Online Appendix. Table 1 shows descriptive statistics for PM2.5. The average concentration 

of PM2.5 during 1996-2010 is 53.08 μg/m3, which is five times larger than the WHO’s standard.  

3.2.3 Thermal Inversions 

      The data on thermal inversions are also from the MERRA-2. In particular, we utilize the 

product M2I6NPANA version 5.12.4, which divides the earth by 0.5 degree × 0.625 degree (around 

                                                 
13 For real-time air pollution and the geographic locations of the eight monitoring stations, please see 

http://www.cnemc.cn/ from CNEMC and http://www.stateair.net/web/historical/1/1.html from US Embassy. 

http://www.cnemc.cn/
http://www.stateair.net/web/historical/1/1.html
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50 km × 60 km) grid, and records the six-hour air temperature at 42 layers, ranging from 110 meters 

to 36,000 meters.14 We aggregate all data from grid to county. Within each 6-hour period, we 

calculate the temperature difference using temperature in the second layer (320 meters) minus 

temperature in the first layer (110 meters). If the difference is positive, there exists a thermal 

inversion and the difference measures the inversion strength. If the difference is negative, it is 

normal condition and we truncate the difference to zero. We then average the inversion strength 

across all six-hour lapses within each five-year period. We also check the robustness using 

temperatures in the first and third layers (540 meters) and the results are robust. 

Table 1 shows the means and standard deviations for thermal inversion strength. The average 

strength during our study period is 0.22 °C. During 1996-2010, average thermal inversion strength 

appears to be increasing at a very slow pace in average.  

3.2.4 Weather 

      The weather data are obtained from the China Meteorological Data Sharing Service System 

(CMDSSS), which records daily minimum, maximum, and average temperatures, precipitation, 

sunshine duration, relative humidity, and wind speed for 820 weather stations in China.15 We then 

average relative humidity, and wind speed, and aggregate precipitation and sunshine duration 

across days within each year and further average to each five-year period. We also construct the 

number of days within each 1 °C temperature bin and aggregate over five-year periods.  

                                                 
14 The data can be downloaded at https://disc.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary.  
15 CMDSSS was developed and is currently managed by the Climatic Data Center, National Meteorological 

Information Center, China Meteorological Administration. See http://data.cma.cn/ for details. 

https://disc.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary
http://data.cma.cn/
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4 Results 

4.1 First-stage Results: The Effect of Thermal Inversions on Air 

Pollution 

      Table 2 presents the first-stage estimates of the effect of thermal inversions on PM2.5 

concentrations (Equation 2 in Section 3.1). All regressions control for county and period fixed 

effects as well as weather controls. Column (1) shows the results without population weights, while 

column (2) uses population aged 15 to 60 in 1995 to weight the regression.  

We find significant and robust effects of thermal inversions on PM2.5 concentrations. As the 

measure of thermal inversion strength is somewhat difficult to interpret in terms of magnitude, one 

can multiply the point estimates by 0.004 (0.22/53.08) in order to convert to elasticities. The point 

estimates in column (1) suggest that a 1 percent increase in average thermal inversion strength 

leads to a 0.3 percent increase in PM2.5 concentrations. Table 2 also reports the Kleibergen-Paap 

(KP) F-statistics, and all of them are well above Stock and Yogo’s 10% maximal bias threshold, 

of 16.38.  

4.2 Second-stage Results: The Effect of Air Pollution on Migration 

      Panel A in Table 3 reports the estimates of air pollution on the net outmigration ratio with and 

without adjusting for approximate deaths. Recall that Table A1 in the Online Appendix show that 

among the population we focus on, those between 15 and 60 years of age, there are no effects of 

pollution on deaths. Thus, failing to subtract deaths from the outmigration ratio should not affect 

our estimates. Nevertheless, in columns (4) – (6) we show results that adjust for approximate deaths, 

which are calculated based on deaths in the last year of each period. Columns (1) and (4) report the 
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fixed effects (FE) estimates of Equation (1), while columns (2) – (3) and (5) – (6) report the IV 

estimates with and without population weights. All regressions include county and period fixed 

effects.  

We first discuss the results of air pollution on net-outmigration ratios without adjusting for 

deaths. The FE estimates in column (1) suggest a positive and significant correlation between air 

pollution and net outmigration after controlling for weather variables as well as county and period 

fixed effects. Note that pollution is endogenous in this specification and may be correlated with 

other determinants of migration that vary over time within counties – such as wage, GDP, job 

opportunities, and infrastructure – which would result in omitted-variable bias. As many of these 

potentially omitted factors are likely to attract migrants, the omitted-variable bias is likely negative. 

The FE estimates may also be biased downwards due to reverse causality, as positive net-

outmigration flows may bring down pollution.  

Consistent with the expected bias discussed above, IV estimates of the effect of air pollution 

on net outmigration ratios are larger in magnitude. Columns (2) and (3) show IV estimates of 

Equation (1), in which pollution is instrumented with the average strength of thermal inversions. 

Our preferred specification is column (3), which weights the regression using population in 1995. 

It shows that the IV effect is nearly twice the size of the FE effect.  

The magnitude of the effect of air pollution on net outmigration flows is large and economically 

significant. A ten percent increase in PM2.5 (5.31 μg/m3) reduces population by 2.8 per 100 

inhabitants due to migration. Although it is tempting to apply these estimates to the increase in air 

pollution that the average county in China experienced over the 15 years of our study: 60 percent 

(27 μg/m3), we caution against doing this, as the observed changes in air pollution were highly 

correlated across counties and our estimate corresponds to an independent change in air pollution. 

Nevertheless, we note that there was a substantial amount of uncorrelated variation in pollution 
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over the time of our study. As Figure 3 illustrates, there are several counties that experienced 

changes larger than 40 μg/m3 (a 48 percent increase relative to the national average) and smaller 

than 10 μg/m3 (a 63 percent reduction relative to the national average). As a way to assess the 

amount of variation in air pollution that is relevant for our migration response estimates, we also 

decomposed the overall time variation in air pollution into a common trend across counties and the 

remaining (uncorrelated) variation. The uncorrelated time variation is about 26% of the total time 

variation. Hence, even if our estimates apply just to the uncorrelated portion of the observed 

variation, our large point estimates still imply that the population movement in response to air 

pollution is economically meaningful.   

Column (2) of Table 3 shows the same specification without population weighting. Weighting 

is potentially important in our setting for two reasons. First, when we weight by population, we 

account for the fact that our dependent variable is more precisely estimated in counties where 

population is large. Second, they provide a different weighted average of local effects that better 

reflects the flows faced by a representative individual rather than a representative county. 

Responses could be different in more populated areas if these areas tend to be wealthier, more 

educated and/or there are non-linearities in the dose-response function (as these areas tend to be 

more polluted). Two observations emerge from these comparing our unweighted results to column 

(3). First, the size of the standard errors vary little, suggesting that inference in unweighted 

regressions is not misleading. Second, the effect of PM2.5 on net outmigration are similar, 

suggesting that underlying heterogeneity across regions in terms of population is not very 

important. Nevertheless, we explore other dimensions of heterogeneity in our estimates in Table 5.  

Finally, columns (4) – (6) show our estimates when we adjust the dependent variable for deaths 

by using deaths observed in the last year of each period multiplied by five. Results change very 

little compared to columns (1) – (3).  
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Next, we discuss the results concerning our destination-based immigration measure. There are 

two important differences in the interpretation of these results with respect to the previous 

discussion. First, destination-based immigration corresponds to floating immigration only. This 

means that formal immigration, which is costlier (Kinnan, Wang, and Wang, 2016), is excluded 

from this measure (see Section 3.2.1). Second, our dependent variable is a measure of immigration 

as opposed to (net) outmigration. This has a couple of important implications. First, if individuals 

value air quality, then we will expect air pollution to have a negative effect on immigration flows 

(the opposite sign to the effect of pollution in Table 3). Second, finding a response of immigration 

flows to air pollution relies on more demanding assumptions about people’s economic behavior. 

In contrast with measures of outmigration which capture the effect of changes in the amenity where 

people live, immigration measures capture the effect of changes in the amenity where people move 

to. Thus, for us to capture the effects of air pollution using this measure, individuals need to be 

aware of pollution changes in the place where they are planning to move to as opposed to pollution 

changes in the county where they live. Nevertheless, we find results that are consistent with people 

moving to counties whose pollution has improved due to fluctuations in thermal inversions.  

Panel B in Table 3 reports the estimates of PM2.5 on immigration ratio. The FE estimates in 

column (1) suggest a significantly positive relationship between air pollution and immigration (the 

opposite sign to what one would expect from the causal relationship). The omitted variable bias in 

this case is likely to bias our coefficient of interest upwards, as pollution is correlated with 

economic activity. In the case of immigration, the bias seems to be large enough to flip the sign of 

the expected causal relationship. When we instrument air pollution using strength of thermal 

inversions, we find significantly negative effects of air pollution on immigration. Our preferred 

estimates in column (3) imply that a 10 percent reduction in PM2.5 (5.31 μg/m3) brings in 1.7 people 

per 100 inhabitants. The smaller magnitude of the effects compared to net outmigration ratios is 
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expected as net outmigration would capture the effect of air pollution on both inflows and outflows, 

while immigration only captures the effect on inflows. In addition, official migration (which is not 

captured by this measure) is less than one third of overall migration according to our calculations 

from the 2000 census (see Section 3.2.1 and Ebenstein and Zhao (2015)).  

Column (2) in Panel B omits the population weights from the estimation. In the case of 

destination-based immigration, population weights seem to matter more for the magnitude of the 

effect: the immigration effects faced by the average person in China seem to be slightly larger than 

those faced by the average county.  

4.3 Robustness Checks 

      Here we discuss the results of several robustness checks: alternative forms of clustering 

standard errors, alternative fixed effects and controls, alternative weights, variations on the 

measure of thermal inversions, and a spatial lag model that accounts for potential localized 

spillovers and spatial correlation of standard errors.  

Table 4 shows several of these additional results and compares them to our baseline (column 

1). In the baseline, standard errors are clustered at county level (six-digit administrative code), 

which accounts for autocorrelation of the error terms over periods within each county. In column 

(2), we cluster standard errors at prefecture level (four-digit administrative code), an administrative 

level in China which usually includes 10-20 counties, to account for both autocorrelation and 

spatial correlation across counties within each prefecture. Though standard errors are about twice 
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as large, the effects are still statistically significant at the 5% level. The KP F-statistic for weak 

instruments is quite lower, but still above the Stock-Yogo critical value for 10% relative bias.16  

In the baseline, we use period fixed effects to control for common shocks for the whole country 

in each period, such as global economic trend and national policies. In column (3) of Table 4, we 

replace period fixed effects with period-by-province fixed effects, to control for common shocks 

within each province. This specification shows that our results are robust under a more stringent 

identification assumption that allows for province-specific trends in unobserved determinants of 

migration trends to coincide with thermal inversion patterns over time. In column (4) we replace 

the baseline weights (1995 population) with average population during the 1996-2010 period. 

Results are very similar to our baseline.  

Columns (5) and (6) check the robustness of our results to different ways of constructing our 

instrumental variable. In column (5) we test the robustness of using different layers of temperature 

to calculate thermal inversion. Our baseline model uses temperatures in the first and second layers 

(110 and 320 meters). Column (5) shows the results with temperatures in the first and third layers 

(110 and 540 meters). Our results are robust to alternative layers of inversion. In column (6) we 

use number of days with thermal inversion as our instrumental variable instead of inversion 

strength. Our results are robust to this alternative definition as well.  

Column (7) probes the robustness of our results to alternative weather controls. The 

temperature controls used in the baseline are quite flexible, as they allow for temperature in each 

degree bin to have a different effect on migration. However, this specification does not allow for 

heterogeneity of these effects across regions. As Figure A2 in the Online Appendix demonstrates, 

                                                 
16 We also experiment with two-way clustering at prefecture and period level to account for potential spatial 

correlation and nation-wide weather patterns that could result in similar deviations from the mean occurrence in 
thermal inversions. Our effects (not reported) are also robust to this specification of the variance matrix. 
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the relationship between weather and inversions is different for different regions. If for any reason 

there was a spurious correlation pattern of temperature and migration that coincided with this 

heterogeneity, temperature could still bias our results. Thus, column (7) includes interactions 

between all of our standard weather controls and six region dummies. Results are very similar to 

our baseline results, which rules out that differential temperature-migration patterns across regions 

are being picked up by our instrument.  

Finally, Online Appendix Tables A2 – A4 show the results of a spatial lag model that addresses 

several potential issues with our estimates stemming from the spatial proximity of some of these 

counties. First, if the bulk of migration in response to an air pollution shock (like the one generated 

by thermal inversions) goes to (or comes from) a small set of counties in close proximity to the 

shock-receiving county, our identification strategy would violate the stable unit treatment value 

assumption (SUTVA). This is because the treatment to one unit of observation (a pollution shock 

to one county) could cause nearby counties to experience meaningful atypical migration flows. If 

on the other hand, the migration response is dispersed over numerous counties, then SUTVA would 

not be violated. A spatial lag model is useful to test this assumption as it explicitly accounts for the 

effect on migration shocks to nearby counties. Because migration shocks to nearby counties are 

also endogenous, we instrument for them using thermal inversion shocks to them. The results of 

this model are presented in Online Appendix Table A2, where the spatial lag is created using the 

inverse distance weighted average of migration flows to neighboring counties. This variable is 

instrumented using a similarly weighted average of thermal inversion average strength. Columns 

(1) – (4) show the results of this model with net outmigration as the dependent variable and columns 

(5) – (8) show the results for immigration of floating migrants.17 Note that the effect of local 

                                                 
17 Standard errors are clustered at either the county level (columns 1, 2, 5, and 6) or at the prefecture level 

(columns 3, 4, 7, and 8). We do not use a spatially decaying correlation structure for the variance as the code 
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pollution on migration in all models remains of roughly the same magnitude as in our baseline and 

with similar levels of significance once we explicitly control for local spillovers. Consistent with 

this, the effect of the spatial lag of migration flows is insignificant in all models. Together, these 

results suggest that thermal inversion shocks are well spread out across counties as opposed to 

concentrated in a few neighboring counties. 

Second, because weather shocks might be spatially correlated, thermal inversions could be 

more likely in counties in close proximity to a county that receives one. Although clustering at the 

prefecture level (like we do in column 2 of Table 4) could help approximate the correct error 

structure in this case, a spatial lag model would again fully account for this effect separately. 

Unfortunately, the correct variance structure for the IV spatial lag model, one where the correlation 

of the dependent variable decays with distance, is hard to estimate from scratch and generic code 

is not available. However, Tables A3 and Tables A4 estimate the first stage and reduced form of 

this IV model using the correct variance structure. In all cases the main results do not differ from 

our baseline, suggesting that localized spillovers and spatial correlation in the error term are not 

affecting our main estimates.  

4.4 Heterogeneity by demographic groups  

      In the previous section, we find a robust and significant effect of air pollution on migration for 

the adult population in China. We argue that the effect we identify reflects the average response to 

perceived long-run air pollution changes. However, different individuals may have different 

tradeoffs between perceived harm from air pollution and economic opportunities. In particular, we 

expect that highly educated individuals will be better informed about potential harm from air 

                                                 
that incorporates both IV and this variance structure is currently unavailable. However, a variance structure with 
a spatially decaying correlation is studied in Online Appendix Tables A3 and A4, which correspond to the first 
stage and the reduced form of the IV model in Table A2.  
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pollution exposure and will also have lower costs of migration, as formal migration is within reach 

for this demographic group. Other heterogeneity in the response could stem from differences in 

vulnerability to air pollution: children and elderly face higher health impacts from poor air quality. 

In this section we exploit information on demographic characteristics to explore whether our main 

result masks any heterogeneity that is consistent with these relative tradeoffs.  

4.4.1 Education and gender 

      We first explore whether the migration response varies by education level. Note that because 

we are focusing on individuals aged between 15 and 60, education is likely fixed for most of the 

adults in our sample. Highly educated individuals are likely to have a better understanding of the 

harmful effects of air pollution, which would increase their perceived benefit from migration. They 

are also likely to have higher income and more job opportunities as well as the ability to change 

their registration. This last set of factors are likely to lower the opportunity cost of migrating, again 

making the migration response to pollution more likely.  

Panel A of Table 5 shows how our estimates of the effect on net outmigration vary by education 

and gender categories. The three categories of education level we explore are junior high school or 

below, high school, and college or above.18 Although we find positive and significant effects of 

PM2.5 on net outmigration ratio for all educational categories, there is a large degree of 

heterogeneity across education groups. Consistent with the relative tradeoffs described above, our 

results show that the migration response is monotonically increasing with education. For example, 

the estimated coefficient of PM2.5 for adults with college degree or above is twice the size of the 

effect for population with junior high school education or below. 

                                                 
18 The data on immigration ratio by education level are not available. 
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Importantly, these findings suggest that air pollution may have important effects on labor force 

and socioeconomic composition. Air pollution may impose significant economic costs on local 

economies and cause the so called “brain drain effect” (Fischer, 2003). In addition, our findings 

support other recent literature that finds effects of air pollution on the socioeconomic composition 

of neighborhoods (Hanlon, 2016; Heblich, Trew, and Yanos, 2016).  

When looking at the results by education and gender categories, we find that the education 

gradient is more pronounced for males than for females. In particular, females with the lowest level 

of education we consider are still more likely to migrate in response to air pollution than the average 

adult in China. In contrast, males in this education category are not migrating in response to 

pollution according to our estimates. Also note that regardless of the education level, women are 

more likely to migrate than men. This pattern could emerge from a lower labor force participation 

of women combined with the ability of families to live in separate counties. It could also stem from 

women migrating away from their husband along with the children they take care of in order to 

protect them from the harmful effects of air pollution. In the next section we explore whether it is 

women in young and mid adulthood that have stronger responses, which would be consistent with 

split families. 

4.4.2 Age and gender 

      The expected relative size of the migration effect by age is less clear than by education. On the 

one hand, younger adults may have lower opportunity costs of moving as their networks have not 

been established and many may be choosing the location of their very first job. They may also have 

younger children that are more vulnerable to air pollution. Both of these traits would lead younger 

individuals to migrate at higher rates in response to air pollution compared to older individuals.  

On the other hand, older adults will be closer in time to facing very harmful effects of air pollution 
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as suggested by our results on deaths in Online Appendix Table A1. This would lead to higher 

responses from the older individuals in our sample.  

      We present the results by age in Panel B of Table 5. Our results show that young and mid-age 

adults are more likely to migrate in response to air pollution compared to older individuals. The 

split by gender provides an even more nuanced picture, showing that among females it is mid-age 

adults that are more likely to migrate, but among male it is the youngest cohort that is more mobile 

in response to air pollution. This pattern is again consistent with families being able to split across 

two locations in order to maximize both health benefits and economic gains.   

Finally, our results by age provide an additional robustness check on the construction of our 

dependent variable. Given that we cannot properly account for deaths, the fact that the effect is the 

smallest for the oldest cohort is reassuring. If our effects were biased upwards by deaths being 

counted as out migrants, the bias would be strongest for the oldest group.   

4.4.3 Results by Origins of Immigration 

      The data on destination-based immigration not only report the number of immigrants, but also 

report the origins of those immigrants in three categories: from other counties within the same 

province, from other provinces, and within counties. As the source of air pollution variation is 

unlikely to induce within-county differences in air pollution, we should not expect migration flows 

within counties unless our instrument is capturing some other determinant of relocation. Thus, this 

detail of the data allows us to (a) inquire whether most of the floating migration flows occur within 

provinces or outside provinces and (b) conduct a robustness check on our research design and 

instrument validity.  

      Table 6 reports our results on destination-based immigration ratio by each type of flow. We 

find significantly negative effects of pollution on destination-based immigration for both 
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movements across counties within a province and movements across provinces (columns (2) and 

(3)). However, migration within a province appears to be twice as large as migration across 

provinces. This is unsurprising given our earlier observation on the gender imbalance, which 

suggests that heads of household may be staying behind. If this were the case, remaining within 

the same province might be less costly for the family. It is also possible that families may be able 

to change their residence without changing their job when remaining within the same province. In 

other words, families could be unbundling the job and home location decisions. These results 

suggest that immigrants might be trying to minimize pollution exposure, while at the same time 

remaining within the same region where costs of migrating are smaller.  

Column (4) shows the response of destination-based immigration within counties to air 

pollution. The effect is very close to zero in magnitude and insignificant, lending support to the 

notion that our instrument is unlikely to have effects on other determinants of migration.  

4.4.4 Results by Occupation 

      In Table A5 in the Online Appendix, we estimate the effect of PM2.5 on immigration ratio by 

occupations19. Panel A includes all immigrants regardless of their origins, while Panels B and C 

include immigrants from the same province and from different province respectively. Column (1) 

includes all occupations. Relative to our baseline estimate for all immigrants regardless whether 

they are employed or not (column (3) in Table 3), the effect for immigrants who are employed are 

larger, and most immigrants are from the same province.  

      Columns (2) – (7) report the effect on specific occupations, including 

government/party/enterprise leader, professionals, clerks, business/service, agriculture, and 

                                                 
19 The data on net outmigration ratio by occupation are not available.  
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manufacturing20. We find the largest effect for immigrants working in the business and service 

sector. One possible reason is that they are easy to move. On the contrary, the effect is smallest for 

people in the agriculture sector, because they may be tied to the land.  

4.5 Where did People Get Information on Air Pollution? 

      Our results on migration responses to air pollution indicate that individuals were able to keep 

track of recent changes in air pollution levels both in origin and destination counties. In order to 

confirm this, we explore whether counties that had air pollution monitors, and thus, objective 

public information on air pollution levels experienced sharper responses to air pollution.  

      Our sample period is from 1996 to 2010. Since 2000, the Ministry of Environmental Protection 

(MEP) published publicly available data on API, a piece-wise linear transformations of PM10, SO2, 

and NO2. In 2000, there are only 47 cities with API data available. The number of cities with API 

data are then increased each year, and to 86 in 2010. We can therefore explore whether the effects 

are larger for cities with API data. 

      We report the results in Table A6 in the Online Appendix. Panels A and B include cities with 

API data, and Panels C and D include cities without API data. The dependent variables are net 

outmigration ratio in Panels A and C, and immigration ratio in Panels B and D. Column (1) is the 

baseline estimate, in which we include all cities. In columns (2) – (6), we only include cities with 

or without API data. 

      We find a much larger effect for cities with API data. For example, in column (6), we find that 

the effect on net outmigration ratio is twice larger for the 86 cities with API data than the remaining 

250 cities without API data. The same conclusion holds when migration is measured by 

                                                 
20 See detailed description of each occupation at http://ms.nvq.net.cn/nvqdbApp/htm/fenlei/index.html (in 

Chinese).  

http://ms.nvq.net.cn/nvqdbApp/htm/fenlei/index.html
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immigration ratio. These results are consistent with individuals responding to air pollution 

information, and suggest that people do incorporate the publicly available API data into their air 

pollution assessments.21  

4.6 Measuring Air Pollution using Sulfur Dioxide (SO2) 

      Our results so far have used PM2.5 as the indicator for air pollution levels, since it is a major air 

pollutant in China and causes a variety of health problems. However, as it is true in other papers 

that use thermal inversions as a source of variation for air pollution, the observed effects could 

correspond to other pollutants that are also affected by thermal inversions. In order to explore 

whether our results will change if we use a different measure of air pollution, we use sulfur dioxide 

(SO2) instead of PM2.5  as the main pollutant of interest. The MERRA-2 dataset we used directly 

reports SO2.  

      Table A7 in the Online Appendix reports the first-stage estimates on SO2. We find that a 1 °C 

increase in average inversion strengths in a five-year period increases the concentrations of SO2 by 

24.95 μg/m3. Converted to elasticities, we find that a 1 percent increase in inversion strength 

increases SO2 concentrations by 0.36 percent22, which is very similar to the elasticity of PM2.5 

(elasticity=0.33). Table A8 in the Online Appendix reports the second-stage estimates on the effect 

of SO2 on migration. Our baseline model in column (6) suggests that a ten percent increase in SO2 

(1.54 μg/m3) concentrations in one county induces 2.38 people moving out from that county net 

                                                 
21 Another way to show the importance of air pollution data is to run the regression for periods without and with 

pollution data. However, because we only have three periods (1996-2000, 2001-2005, and 2006-2010) and API 
data are only available in 2000, we cannot run regression models for periods 1996-2000 since there is no 
within-county variation. We estimated regressions for periods 1996-2005 and 2001-2010, each with two five-
year separately, and find a much larger effect for the latter periods. These results are available upon requests.   

22 The mean concentrations of SO2 during our sample period is 15.39 μg/m3.  
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out of new arrivals and deaths. The elasticity is quite similar to the elasticity with respect to PM2.5  

(2.82).  

      In all the IV specifications above, we run regressions models separately for PM2.5 and SO2. 

Therefore, the estimated coefficient captures the effect the specified pollutant along with the effect 

of any other pollutants that are correlated with it and respond to thermal inversions. To explore the 

separate effects of the two pollutants we have data for, we use two approaches. The first approach 

is to regress two air pollutants simultaneously in one regression model, and use two IVs: thermal 

inversion strength and counts. The second approach is to construct a single pollution index, the air 

quality index (AQI), which is essentially a piece-wise linear transformation of two pollutants. The 

AQI is particularly interesting, as it would be similar to the pollution measure that is reported by 

the government, and thus the measure that individuals are likely to respond to. The pollution index 

is then instrumented by thermal inversion strength.  

The results are presented in Table A9 in the Online Appendix, in which migration is measured 

by net outmigration ratio in columns (1) and (2), and by immigration ratio in columns (3) and (4). 

In columns (1) and (3), we include both air pollutants in one regression model. We also report the 

Sanderson-Windmeijer F-statistics for test of weak instruments for each endogenous variable 

conditional on the other, as well as the test statistic and p-value for joint significance. In columns 

(2) and (4), we only include the single pollution index, the AQI.  

When we include both air pollutants in the model, we find insignificant individual effects of 

pollution on net outmigration; but a highly significant joint effect of both pollutants (column (1)). 

Because of the imprecision of the individual coefficients, it is difficult to assess which pollutant is 

playing the leading role. When we use destination-based immigration as our outcome variable, we 

find that the effect of PM2.5 is weakly significant but the joint effect is significant at the 1% level.  
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When we use AQI to incorporate two pollutants into one single index, we also find statistically 

significant and comparable effects. During the period 1996-2010, the average five-year AQI 

increased by 29.14 points. This suggests that counties that experienced a five-year change in 

pollution similar to the country’s average saw a 12.44 percent (0.4269% × 29.14) drop in the adult 

population through migration in response to this increase (under the linearity and independence 

assumptions discussed above). Of this, 7.61 percentage points (-0.2611% × 29.14) appear to be 

driven by a slowdown of floating immigration flows (column (4)), assuming symmetry in the 

effects of air pollution. Note that our effects aim at isolating the causal effect of pollution forces 

on migration. Total observed migration flows over this period that are substantially different to 

these calculations are perfectly consistent with these estimates, as migration flows are a function 

of many other variables besides air pollution. Nevertheless, note that large five-year changes in 

population due to migration are not rare (see Figure 1). 

4.7 Mechanisms 

      There could be two possible mechanisms through which air pollution affects people’s 

migration decision. The first is individual-decision driven (or household-decision driven), which 

means that people voluntarily move to counties with better air quality because it is good for their 

or their family’s health. The second is the firm or government-decision driven, which means that 

people move predominantly in response to a firm or a government’s decision to relocate economic 

activity in response to air pollution. For example, Fu, Viard, and Zhang (2017) find that air 

pollution significantly lowers labor productivity in manufacturing firms in China. As a result, firms 

may move to clean places and those workers move along with firms. 

      To test whether this is the case, we utilize the Chinese Industrial Enterprises Database, the same 

dataset used in Fu, Viard, and Zhang (2017). This dataset covers all state-owned enterprises and 
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non-state firms with sales above CNY 5 million and reports annual balance-sheet information from 

1998 to 2007. Similar to our migration measure, we define five years as a period, namely, 1998-

2002 as the first period, and 2003-2007 as the second period. We then construct the outmigration 

(immigration) ratio for each county as the ratio between number of firms moving out (in) and total 

number of firms at the beginning of each period. We calculate net outmigration ratio as the 

difference between outmigration and immigration ratio. We then estimate the effect of air pollution 

on three measures of firm migration using thermal inversions as the instrument and include county 

fixed effects, period fixed effects, and weather controls. 

      Table A10 in the Online Appendix reports the estimates. Column (1) includes all firms. 

Columns (2) – (5) reports the estimates for each ownership: state-owned, private, foreign, and 

hybrid. We do not find any significant effects of five-year average air pollution on any measure of 

migration for any ownerships. This is also consistent with Fu, Viard, and Zhang (2017), in which 

they do not find effect of annual average air pollution on firm’s migration. Our results suggest that 

the migration in response to air pollution that we are capturing is predominantly driven by decisions 

at the individual or household level.  

5 Discussion and Conclusions 

      Our findings suggest that pollution changes are an important determinant of internal migration 

in China. A county-level independent shock to air pollution of 10 percent of the average 

concentration will reduce the population in that county by 2.8 percent through a combination of 

less immigration and more outmigration. A significant share (close to half) of that response seems 

to be produced by reduced immigration of floating immigrants; i.e. immigrants that do not change 

their hukou or official residence when they move. This suggests that individuals keep track of air 

pollution levels not only in their county of origin but also in potential destination counties.  
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      When interpreting the magnitude of our results, it is important to account for the independence 

of the shocks that we use to identify our effects. This is relevant because pollution changes in China 

in the period of our study were highly correlated across counties. Specifically, out of the average 

time variation in our pollution data (that is, the average variation left after subtracting the cross-

sectional variation), only 26 percent is uncorrelated across counties. Therefore, extrapolating our 

estimates to the total changes in air pollution that the average county experienced would likely 

overestimate the movement in population that air pollution was responsible for in this period. 

However, even when assuming that the correlated portion of the variation in this period did not 

result in any migration across counties, our effects suggest significant changes in population in 

response to air pollution. Specifically, we can multiply our preferred estimate times the standard 

deviation of the uncorrelated variation, 6.93, to get the percentage reduction in population a county 

would experience from an independent shock to air pollution of typical size. This calculation yields 

a net-outmigration impact of 3.68% of the population over the course of five years.    

The magnitude of these flows is especially important when considering their demographic 

composition. Our results show that responses to air pollution are predominantly driven by women 

in childbearing and child-rising age and that their male counterparts migrate at lower rates (and 

only when they are very young). This suggests that families are choosing to split between different 

locations in response to air pollution; a result that had not been documented in the literature. In 

addition, the migration response to air pollution has a steep education gradient. This has the 

potential to reshape the labor force composition across counties.   
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Panel A: Net Outmigration Ratio 

 
Panel B: Immigration Ratio 

Figure 1: Migration in China (1996-2010) 

Notes: This figure depicts the average migration for each county in China over the period 1996-2010. In 
Panel A, migration is measured by net outmigration ratio, which is the percent of population leaving the 
county net of new arrivals and deaths. In Panel B, migration is measured by destination-based 
immigration ratio, which is defined as the percent of population entering the county with their hukou in 
the origin. 
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Panel A: PM2.5 and Thermal Inversion 

 

Panel B: GDP and Thermal Inversion 

Figure 2: Time Trend of PM2.5, Thermal Inversions, and GDP in China (1980-
2015) 

Notes: This figure depicts the national average of PM2.5 and thermal inversions in Panel A and GDP and 
thermal inversions in Panel B in each year during 1980-2015.  
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Figure 3: Pollution Changes in China (1996-2010) 

Notes: This figure depicts the changes in PM2.5 concentrations between the period 1996-2000 and 2005-
2010 for each county in China. 
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Figure 4: Expectation 

Notes: This figure illustrates the formation of expectations about air pollution in the presence of pollution 
shocks generated by thermal inversions. We thank Tamma Carleton, our discussant at the Occasional 
Conference in UCSB, for providing it.  
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Panel A: Average of thermal inversions (ºC) during 1996-2010 

 

Panel B: Difference between maximum and minimum inversions (ºC) 

Figure 5: Thermal inversions (1996-2010) 

Notes: Panel A depicts the average of thermal inversions for each county during 1996-2010. Panel B 
depicts the difference between maximum and minimum inversions for each county during the same 
period.  
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Panel A: Net Outmigration Ratio with Death Adjustment 

 

Panel B: Immigration Ratio 

Figure 6: Histogram of Net Outmigration Ratio and Immigration Ratio 

Notes: This figure plots the histogram of net outmigration ratio with death adjustment (Panel A) and 
destination-based immigration ratio (Panel B). Percentiles 5, 25, 50, 75, and 95 are highlighted in red. 
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Table 1: Summary Statistics 

 1996-2010 1996-2000 2001-2005 2006-2010 
Variable Unit Mean SD Mean SD Mean SD Mean SD 

Migration  
Net outmigration ratio (death adjustment) % -9.17 16.15 -6.61 9.89 -5.82 16.39 -15.08 19.07 
Net outmigration ratio (no death adjustment) % -7.89 16.04 -5.30 9.83 -4.46 16.25 -13.90 18.88 
Immigration ratio % 6.01 10.73 3.41 6.16 4.20 7.49 10.40 14.90 
Immigration ratio by origin  

Within county % 4.45 4.53 2.50 2.23 3.02 3.48 7.84 5.20 
Across county within province % 3.66 6.72 2.37 4.10 2.36 4.16 6.25 9.56 
Across county outside province % 2.58 5.93 1.72 4.06 1.88 4.71 4.15 7.94 

Death rates ‰ 1.28 0.54 1.31 0.39 1.35 0.61 1.19 0.57 
Air pollution  
PM2.5 μg/m3 53.08 27.93 42.68 19.85 50.89 24.53 65.67 32.76 
Thermal inversion  
Strength °C 0.22 0.19 0.21 0.19 0.22 0.20 0.23 0.20 
Number of inversions Days  107.65 59.00  107.30 56.87  107.03 59.63  108.62 60.47 

Notes: The unit of observation is county-period (five years). Number of observations is 7,911. Net outmigration ratio is defined as the percent of population aged 15 to 
60 leaving the county net of new arrivals and deaths. Immigration ratio is defined as the percent of population aged 15 to 60 entering the county with their hukou in the 
origin. Death rates are for population aged 15 to 60. Pollution data are reported at monthly level, and then are averaged to each year and further to each period. Thermal 
inversion strength is calculated using the temperature difference in altitudes of 110 and 330 meters within each six-hour period, and then is averaged for each period. 
Positive difference indicates an existence of a thermal inversion with magnitude representing the strength, while negative difference indicates a non-existence of a 
thermal inversion and is truncated to zero. Number of inversions is calculated using annual days with thermal inversions, and then averaged to the five-year period.  
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Table 2: The Effect of Inversions on PM2.5 (First Stage) 

 (1) (2) 
Thermal inversions 78.6938*** 82.0176*** 

 (5.4654) (5.1621) 
KP F-statistics 865.2 984.9 
Observations 7,911 7,911 
County FE Yes Yes 
Period FE Yes Yes 
Weather controls Yes Yes 
Weighting No Yes 

Notes: The dependent variable is PM2.5. Regression models are 
estimated using Equation (2) and include county fixed effects 
and period fixed effects. Weather controls include temperature 
bins within 1ºC, second-order polynomial in precipitation, 
humidity, wind speed, and sunshine durations. Regression 
models are weighted using population aged 15 to 60 in 1995 in 
column (2). Standard errors are listed in parentheses and 
clustered at county level. * p <0.10, ** p <0.05, *** p <0.01. 
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Table 3: The Effect of PM2.5 on Migration 

 FE IV FE IV 

 (1) (2) (3) (4) (5) (6) 
Panel A: Net Outmigration Ratio 

 No death adjustment Death adjustment 
PM2.5 0.2898*** 0.5797*** 0.5161*** 0.2967*** 0.5944*** 0.5314*** 

 (0.0584) (0.1638) (0.1743) (0.0589) (0.1657) (0.1761) 
KP F-statistics ---- 205.9 250.7 ---- 205.9 250.7 
Panel B: Immigration Ratio 
PM2.5 0.1258*** -0.2516*** -0.3246*** ---- ---- ---- 

 (0.0299) (0.0679) (0.0820) ---- ---- ---- 
KP F-statistics ---- 205.9 250.7 ---- ---- ---- 
Observations 7,911 7,911 7,911 7,911 7,911 7,911 
County FE Yes Yes Yes Yes Yes Yes 
Period FE Yes Yes Yes Yes Yes Yes 
Weather controls Yes Yes Yes Yes Yes Yes 
Weighting Yes No Yes Yes No Yes 

Notes: The dependent variables are net outmigration ratio in Panel A and destination-based immigration ratio in Panel B. 
Through columns (1) – (3), net outmigration ratio is defined as the percent of population aged 15 to 60 leaving the county 
net of new arrivals, without death adjustment. Through columns (4) – (6), net outmigration ratio is defined as the percent 
of population aged 15 to 60 leaving the county net of new arrivals and death. The destination-based immigration ratio is 
defined as the percent of population aged 15 to 60 entering the county with their hukou in the origin. Columns (1) and (4) 
are fixed effects estimates, and columns (2) – (3) and (5) – (6) are IV estimates in which we instrument PM2.5 using 
thermal inversions strength. Weather controls include temperature bins within 1 ºC, second-order polynomial in 
precipitation, humidity, wind speed, and sunshine durations. Regression models are weighted using population aged 15 
to 60 in 1995 in columns (1), (3), (4), and (6). Standard errors are listed in parentheses and clustered at county level. * p 
<0.10, ** p <0.05, *** p <0.01.  
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Table 4: Robustness Checks 

 
Baseline 

Alternative 
clustering 

Alternative 
fixed effects 

Alternative 
weights 

Alternative 
layer of inversions 

Alternative 
definition of inversions 

Interaction between 
region and weather 

 (1) (2) (3) (4) (5) (6) (7) 
Panel A: Net Outmigration Ratio 
PM2.5 0.5314*** 0.5314** 0.9348** 0.4780*** 0.4416*** 0.5705*** 0.6098** 

 (0.1761) (0.2143) (0.4119) (0.1694) (0.1486) (0.1842) (0.2563) 
KP F-statistics 250.7 69.60 120.4 269.6 354.7 229.1 26.99 
Panel B: Immigration Ratio 
PM2.5 -0.3246*** -0.3246** -0.4275** -0.3340*** -0.1280** -0.3650*** -0.5481*** 

 (0.0820) (0.1382) (0.1675) (0.0852) (0.0631) (0.0923) (0.1188) 
KP F-statistics 250.7 69.60 120.4 269.6 354.7 229.1 26.99 
County FE Yes Yes Yes Yes Yes Yes Yes 
Period FE Yes Yes No Yes Yes Yes Yes 
Period-by-province FE No No Yes No No No No 
Weighting Pop in 1995 Pop in 1995 Pop in 1995 Average pop Pop in 1995 Pop in 1995 Pop in 1995 
Clustering County Prefecture County County County County County 
IV Strength Strength Strength Strength Strength Days Strength 
Layers 1 and 2 1 and 2 1 and 2 1 and 2 1 and 3 1 and 2 1 and 2 

Notes: The dependent variables are net outmigration ratio in Panel A and destination-based immigration ratio in Panel B. Column (1) is the baseline model. In 
column (2), we cluster standard errors at prefecture level. In column (3), we replace period FE with period-by-province FE. In column (4), we weight regression 
using averaged population aged 15-60 during 1996-2010. In column (5), we calculate thermal inversions using layers at 110 and 540 meters. In column (6), we 
replace IV from thermal inversion strengths to number of days with thermal inversion. In column (7), we add interactions between region dummies and weather 
variables. All models include county fixed effects and temperature bins within 1 ºC, second-order polynomial in precipitation, humidity, wind speed, and sunshine 
durations. Standard errors are listed in parentheses. * p <0.10, ** p <0.05, *** p <0.01. 
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Table 5: The Effect of PM2.5 on Net Outmigration Ratio: By Education, Gender, and Age 

Panel A: By Education and Gender 

 All gender Males Females 

 Full Primary Middle College Full Primary Middle College Full Primary Middle College 

 sample and below school and above sample and below school and above sample and below school and above 
 (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) (11) (12) 
PM2.5 0.5314*** 0.4723** 0.5736** 0.9314** 0.3600* -0.2229 0.6480*** 0.9192** 0.6977*** 0.6975*** 0.7910*** 1.2369** 

 (0.1761) (0.2350) (0.2427) (0.4433) (0.1935) (0.3219) (0.2429) (0.4315) (0.1846) (0.2169) (0.2742) (0.5347) 
KP F-stat. 250.7 300.9 224.2 169.7 250.7 305.3 226.6 171.6 250.7 304.1 224.4 172.1 
Obs. 7,911 7662 7673 7617 7,911 7,699 7,692 7,621 7,911 7,712 7,655 7,595 
Mean [SD] 
of D.V. 

-9.17 
[16.15] 

-1.59 
[10.06] 

-11.20 
[24.64] 

-17.03 
[40.44] 

-10.07 
[18.84] 

-7.18 
[40.02] 

-7.05 
[22.75] 

-10.01 
[32.91] 

-8.68 
[16.64] 

-0.04 
[25.49] 

-12.40 
[27.52] 

-18.97 
[43.68] 

Panel B: By Age and Gender 

 All gender Males Females 

 Age 15-60 Age 15-30 Age 30-45 Age 45-60 Age 15-60 Age 15-30 Age 30-45 Age 45-60 Age 15-60 Age 15-30 Age 30-45 Age 45-60 
PM2.5 0.5314*** 0.7446** 0.6905*** 0.0470 0.3600* 0.7865** 0.2198 0.3536 0.6977*** 0.8583*** 1.1164*** -0.2131 

 (0.1761) (0.3173) (0.2089) (0.2555) (0.1935) (0.3774) (0.2282) (0.2737) (0.1846) (0.3274) (0.2295) (0.3034) 
KP F-stat. 250.7 269.3 255.5 281 250.7 269.3 255.5 281.1 250.7 269.2 255.5 281 
Obs. 7,911 7,911 7,911 7,911 7,911 7,911 7,911 7,911 7,911 7,911 7,911 7,911 
Mean [SD] 
of D.V. 

-9.17 
[16.15] 

-1.07 
[31.16] 

-7.62 
[23.15] 

-13.24 
[13.21] 

-10.07 
[18.84] 

-4.25 
[40.15] 

-8.61 
[25.31] 

-16.21 
[14.65] 

-8.68 
[16.64] 

-0.54 
[30.65] 

-9.37 
[26.98] 

-16.65 
[13.02] 

Notes: The dependent variable is net outmigration ratio by each group. Net outmigration ratio is defined as the percent of population aged 15 to 60 leaving the county net of new arrivals 
and deaths. Regression models are estimated using Equation (1) and include county fixed effects, period fixed effects, and weather controls. Regression models are weighted using 
population for each group in 1995. Standard errors are listed in parentheses and clustered at county level. * p <0.10, ** p <0.05, *** p <0.01. 
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Table 6: The Effect of PM2.5 on Immigration Ratio: By Origins 

 Total immigration 
Across county Across county 

Within county 
 within province outside province 

 (1) (2) (3) (4)    
PM2.5 -0.3246*** -0.1780*** -0.0851** -0.0090 

 (0.0820) (0.0595) (0.0409) (0.0076) 
KP F-statistics 250.7 250.7 250.7 250.7 
Observations 7,911 7,911 7,911 7,911 
Mean [SD] of D.V. 6.01 [10.73] 3.66 [6.72] 2.58 [5.93] 4.46 [2.96] 

Notes: The dependent variable is destination-based immigration ratio, which is defined as the percent 
of population aged 15 to 60 entering the county with their hukou in the origin. Column (1) includes all 
migrants regardless of origins. Column (2) includes migrants whose origins and destinations are in the 
same province. Column (3) includes migrants whose origins are outside the province of the destination. 
Column (4) includes migrants whose origins are in the same county of the destination but in another 
township. Regression models are estimated using Equation (1) and include county fixed effects, period 
fixed effects, and weather controls. Regression models are weighted using population aged 15-60 in 
1995. Standard errors are listed in parentheses and clustered at county level. * p <0.10, ** p <0.05, *** 

p <0.01. 
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Online Appendix 

1. Data Details 

      Below we describe the details on how we calculate the destination-based immigrants. In the 

2000 census, the question on hukou status (R061) includes: 

1. Living in this township1, hukou is in this township 

2. Living in this township for more than 6 months, hukou is outside the township 

3. Living in this township for less than 6 months, leave the place of hukou for more than 6 

months 

4. Living in this township, hukou status not determined 

5. Originally living in this township, now study or work abroad, and does not have hukou. 

      For options 2 and 3, there are further options regarding the place of hukou: (R062) 

1. Other township (xiang) in this county 

2. Other town (zhen) in this county 

3. Other subdistrict (jiedao) in this county 

4. Other township (xiang) in this district2 

5. Other town (zhen) in this district 

6. Other subdistrict (jiedao) in this district 

7. Other counties or districts in this province 

8. Outside this province. 

      There is one question regarding when the person lives in this township (R9). The options are: 

1. Since born 

                                                 
1 Township is a smaller administrative level than county, which includes three forms: subdistrict (jiedao), town 

(zhen), and township (xiang). Subdistrict is mainly used in cities, while town and township are mainly used in 
suburbs and rural areas.  

2 District is the equivalent to county in terms of administrative level (six digits). It is mainly used in cities. 
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2. Before October 31th, 1995 

3. November 1st to December 31th, 1995 

4. 1996 

5. 1997 

6. 1998 

7. 1999 

8. 2000. 

      There is one question (R10) asked what is the origin to this township. The options are: 

1. Within this county 

2. Outside this county (specify the province (two digits), prefecture (four digits), and county 

(six digits) name). 

      We determine if a person is a destination-based immigrant (living in the current address for 

more than six months based on the NBS definition) during the past five years who does not 

transfer the hukou based on the following conditions:3 

x R061=2 

x R062>=7 

x R9>=3. 

      We can also determine if a person is a destination-based immigrant who transfers the hukou 

based on the following conditions:  

x 1<=R061<=2 

x 1<=R062<=6 

x 3<=R09<=8 

                                                 
3 The 2000 census date is November 1st, 2000. 
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x R10=2.  

      The 2005 survey changed several questions. Specifically, the question on hukou status (R06) 

has the following options: 

1. This township 

2. Other township in this county 

3. Other counties (specify the province, prefecture, and county name) 

4. Undetermined. 

      The question R08 asked when you leave the place of hukou, and has the following options: 

1. Never leave  

2. Less than six months 

3. Six months to one year 

4. One to two years 

5. Two to three years 

6. Three to four years 

7. Four to five years 

8. Five to six years 

9. More than six years. 

      Unfortunately, the 2005 census did not ask question on the specific living address before 

moving to this county (question R10 in the 2000 Census). Instead, it asked the living address five 

years ago (November 1st, 2000) and has two options (R15): 

1. Within this province 

2. Outside this province (specify the province name). 

      We determine if a person is a destination-based immigrant who does not transfer the hukou 

during the past five years based on the following conditions:  
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x R06=3 

x 3<=R08<=7. 

      There are several drawbacks of our definition. First, suppose a person’s hukou is in county A, 

and he/she moved from county A to county B seven years ago, and moved from county B to 

county C three years ago. By our definition, he/she should not be counted as an immigrant for 

county C because he/she does not meet the condition for question R08, but he/she should be 

counted as an immigrant. This issue arises from question R08, as it asked when do you leave 

your hukou, instead of when do you move to the current address in the 2000 census. This makes 

us to undercount the destination-based immigrant.  

      Second, suppose a person’s hukou is in county A, and he/she moved from county A to county 

B four years ago, and moved from county B to county C three years ago, this person is counted 

an immigrant for county C based on our definition, but he/she should also be counted as an 

immigrant for county B. In other words, we can only capture the final immigration status, not the 

intermediate steps. 

      Third, suppose a person’s hukou is in county A, and he/she moved from county A to county 

B four years ago, and lives in county B ever since. In the survey date (November 1st, 2005), 

he/she is temporally living in county C for business. Then based on our definition, this person is 

regarded as an immigrant in county C, but he should be counted as an immigrant in county B. 

      We determine if a person is a destination-based immigrant who transfers the hukou based 

during the past five years based on the following conditions: 

x 1<=R06<=2 

x R08=1 

x R15=2. 



5 

Noted this only captures the immigrant from outside provinces, as question R15 does not report 

the specific living address before moving. 

      For 2010 census, the questions on hukou status are similar to the 2005 Survey. To our best 

knowledge, no individual-level data in 2010 are publicly available to researchers. Thus, we 

obtain the county aggregated data on destination-based immigrants. The drawbacks also exist for 

the 2010 data. Note we cannot calculate origin-based outmigrants during 1996-2010 for two 

reasons. First, we only have the county aggregated data on destination-based immigrants in 2010. 

Second, the 2000 census does not report the specific county name of the hukou. In other words, 

we can only calculate the origin-based outmigrants in 2005, which we cannot run regressions 

using the fixed effects model.    

2. Comparison between AOD-based and station-based pollution data 

      We use AOD-based pollution data in this paper because station-based data for specific air 

pollutants are only available after 2013. Before that, the Air Quality Index (AQI), which 

incorporates major air pollutants are only available for a few cities. Our station-based data are 

obtained from web-scratching of the China National Environmental Monitoring Center 

(CNEMC), an affiliates to the Ministry of Environmental Protection of China. CNEMC reports 

real-time hourly AQI and specific air pollutants for around 1,000 monitoring stations4. We 

convert hourly station-based data to county using the IDW method in which we choose 100 km 

radius. We then collapse to month level to compare with AOD-based PM2.5.  

      To start, we plot the monthly trend between AOD-based data (in black) and station-based 

data (in blue) over the period 2013-2015 for PM2.5 in Figure A4 in the Online Appendix. We plot 

for the whole country as well as major cities across China including Beijing, Shanghai, 

                                                 
4 The data can be viewed at http://106.37.208.233:20035.  

 

http://106.37.208.233:20035/
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Chongqing, Guangzhou, and Tianjin. Though there are systemically difference between AOD-

based and station-based data, the trend fits reasonably well. 

      We then conduct a formal statistical test between two sources of data in Table A11 in the Online 

Appendix. The unit of observation is county-year. Column (1) reports the national average of two 

pollutants for years 2013, 2014, and 2015 separately and jointly for station-based data. Standard 

deviations are presented in the parenthesis. Similarly, column (2) reports the AOD-based data. 

Column (3) reports the difference between two sources of data, and the standard errors are 

presented in the parenthesis. We find all the differences are statistically significant at the 1% level. 

However, these differences may be caused by the county-specific differences. Therefore, we report 

the difference conditional on county fixed effects and year fixed effects in column (4). All the 

differences are statistically insignificant. Because in our baseline model, we include county fixed 

effects and period fixed effects, AOD-based data is thus a good proxy for station-based data. We 

test the robustness by altering radius from 100 km to 50 km in column (5) and to 150 km in column 

(6) for the IDW method. We weight the test by population in 1995 in column (7). Our results are 

robust.   
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Panel A: Beijing 

 
Panel B: Shanghai 

 
Panel C: Guangzhou 

Figure A1: Time Trend of PM2.5, Thermal Inversions, and GDP in Beijing, 
Shanghai, and Guangzhou (1980-2015) 

Notes: This figure depicts the average of PM2.5, thermal inversions, and GDP for Beijing (Panel A), 
Shanghai (Panel B), and Guangzhou (Panel C) in each year during 1980-2015. 
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Panel A: National Average      Panel B: Beijing 

 

Panel C: Shanghai       Panel D: Guangzhou 

Figure A2: Correlation between Temperature Bins and Thermal Inversions 

Notes: This figure plots the number of days and thermal inversion strength within each 1 °C temperature 
bin for the nation (Panel A), Beijing (Panel B), Shanghai (Panel C), and Guangzhou (Panel D). 
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Figure A3: Time Trend of PM2.5 by Strength of Thermal Inversions (1980-2015) 

Notes: This figure plots the national average of PM2.5 concentration in each year over the period 1980-
2015 for three categories: thermal inversion strength less than 0.08 ºC (33th percentile), between 0.08 
and 0.24 ºC (66th percentile), and above 0.24 ºC. Two red vertical lines highlight the course of our study: 
1996-2010. 
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Figure A4: Monthly Trend between AOD-based and Ground-based PM2.5 

Notes: This figure plots monthly trend between AOD-based and ground-based PM2.5 for the country and major cities. 
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Table A1: The Effect of PM2.5 on Death Rates 

 Years All ages Age below 15 Age between 15-60 Age above 60 

  (1) (2) (3) (4) 
Average PM2.5 0 0.0182 0.0341* -0.0034 -0.1842 

  (0.0264) (0.0185) (0.0130) (0.1418) 
KP F-statistics  77.20 57.87 70.16 73.11 
Average PM2.5 0-1 0.0041 0.0014 -0.0084 -0.1112 

  (0.0228) (0.0213) (0.0104) (0.1250) 
KP F-statistics  74.49 52.14 65.92 69.15 
Average PM2.5 0-2 0.0536* 0.0358* 0.0041 0.1796 

  (0.0295) (0.0194) (0.0132) (0.1401) 
KP F-statistics  65.90 58.55 61.37 65.79 
Average PM2.5 0-3 0.0755*** 0.0388** -0.0009 0.4653*** 

  (0.0243) (0.0171) (0.0104) (0.1241) 
KP F-statistics  75.30 62.95 71.44 76.03 
Average PM2.5 0-4 0.0660*** 0.0398*** 0.0040 0.4090*** 

  (0.0172) (0.0091) (0.0070) (0.0872) 
KP F-statistics  164.3 187.0 152.2 180.4 

Notes: Number of observation is 7,911. The dependent variable is death rates (‰) in years 2000, 
2005, and 2010. Regression models include county fixed effects, period fixed effects, and flexible 
weather controls. Regression models are weighted using population in each age group in 1995. To 
incorporate lagged effect of air pollution, we calculate the average of each air pollutant across years. 
For example, average PM2.5 with years 0 indicates the contemporaneous PM2.5, while average PM2.5 

with years 0-1 indicates the average between the contemporaneous year and the past year. Average 
PM2.5 with other years can be interpreted in the same manner. We instrument the average air pollutant 
using thermal inversion in the time window. Standard errors are listed in parentheses and clustered 
at county level. * p <0.10, ** p <0.05, *** p <0.01. 
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Table A2: Spatial Lag Model 

 Net outmigration ratio  Immigration ratio 

 (1) (2) (3) (4)  (5) (6) (7) (8) 
PM2.5 0.6095*** 0.4559*** 0.6095*** 0.4559**  -0.2499*** -0.3298*** -0.2499** -0.3298** 

 (0.1770) (0.1722) (0.2106) (0.2094)  (0.0662) (0.0867) (0.1011) (0.1467) 
Net out. SL 0.5829 0.9029 0.5829 0.9029      

 (0.4494) (0.6016) (0.5279) (0.6462)      
Immig. SL      0.1903 -0.0007 0.1903 -0.0007 
      (0.2879) (0.3598) (0.4493) (0.5233) 

       
Observations 7,911 7,911 7,911 7,911  7,911 7,911 7,911 7,911 
Number of counties 2,637 2,637 2,637 2,637  2,637 2,637 2,637 2,637 
County FE Yes Yes Yes Yes  Yes Yes Yes Yes 
Period FE Yes Yes Yes Yes  Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes  Yes Yes Yes Yes 
Weight No Pop in 1995 No Pop in 1995  No Pop in 1995 No Pop in 1995 
IV Strength Strength Strength Strength  Strength Strength Strength Strength 
Cluster County County Prefect Prefect  County County Prefect Prefect 
KP F-statistics 106.3 128.5 29.52 36.12  105.6 127.8 29.43 35.95 

Notes: The dependent variables are net outmigration ratio in columns (1) – (4), and immigration ratio in columns (5) – (8). The spatial lag controls 
(net outmigration ratio spatial lag (Net out. SL) or immigration ratio spatial lag (Immig. SL)) are created with inverse distance weighting of 
migration flows in neighboring counties based on their centroid. The spatial lag controls and the pollution variables are instrumented using the 
thermal inversion strengths in the own county and the spatial lag of the thermal inversions respectively. Regression models are weighted using 
population aged 15 to 60 in 1995 in columns (2), (4), (6), and (8). The standard errors are clustered at either the county level (columns (1), (2), (5), 
and (6)) or prefecture level (columns (3), (4), (7), and (8)). Standard errors are listed in parentheses. * p <0.10, ** p <0.05, *** p <0.01. 
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Table A3: Spatial Lag Model - First stage 

 PM2.5  Net out. SL  Immig. SL 

 (1) (2)  (3) (4)  (5) (6) 
Thermal inversions 78.5956*** 78.5968***  1.6561*** 1.6562***  -1.0666*** -1.0666*** 

 (5.4767) (13.2634)  (0.4419) (0.5716)  (0.2540) (0.3258) 
Thermal inversions SL 237.2689*** 237.2458***  -348.9912*** -348.9934***  292.2409*** 292.2418*** 

 (68.8841) (87.7809)  (10.4501) (65.8131)  (5.2389) (36.8083) 

       
Observations 7,911 7,911  7,911 7,911  7,911 7,911 
County FE Yes Yes  Yes Yes  Yes Yes 
Period FE Yes Yes  Yes Yes  Yes Yes 
Weather Controls Yes Yes  Yes Yes  Yes Yes 
Weighting No No  No No  No No 
IV Strength Strength  Strength Strength  Strength Strength 
Cluster County Spatial HAC  County Spatial HAC  County Spatial HAC 

Notes: The dependent variable is PM2.5 in columns (1) and (2), net outmigration ratio spatial lag (Net out. SL) in columns (3) and (4), 
and immigration ratio (Immig. SL) in columns (5) and (6). The spatial lag of thermal inversions (Thermal inversions SL), is created 
with inverse distance weighting of thermal inversions in neighboring counties based on their centroid. These regressions have standard 
errors clustered at either the county level (columns (1), (3), and (5)) or spatial HAC (columns (2), (4), and (6)). Standard errors are 
listed in parentheses. * p <0.10, ** p <0.05, *** p <0.01. 
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Table A4: Spatial Lag Model - Reduced Form 

 Net outmigration ratio  Immigration ratio 

 (1) (2) (3)  (4) (5) (6) 
Thermal inversions 46.9302*** 46.9621*** 46.9653***  -19.8541*** -19.8514*** -19.8526* 

 (13.1168) (12.7663) (16.3835)  (5.2313) (5.3629) (11.5344) 
Thermal inversions SL -47.5115 -47.5720   -3.9889 -3.9669 

 (150.6978) (166.9888)   (84.4155) (99.6896) 

     
Observations 7,911 7,911 7,911  7,911 7,911 7,911 
County FE Yes Yes Yes  Yes Yes Yes 
Period FE Yes Yes Yes  Yes Yes Yes 
Weather Controls Yes Yes Yes  Yes Yes Yes 
Weight No No No  No No No 
IV Strength Strength Strength  Strength Strength Strength 
Cluster County County Spatial HAC  County County Spatial HAC 

Notes: The dependent variables are net outmigration ratio in columns (1) – (3), and immigration ratio in columns (4) –(6). 
The spatial lag of thermal inversions (Thermal inversions SL), is created with inverse distance weighting of thermal 
inversions in neighboring counties based on their centroid. These regressions have standard errors clustered at either the 
county level (columns (1) (2), (4), and (5)) or spatial HAC (columns (3) and (6)). Standard errors are listed in parentheses. 
* p <0.10, ** p <0.05, *** p <0.01. 
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Table A5: The Effect of Air Pollution on Immigration Ratio: By Occupation 

 All occupations 
Government/party 
/enterprise leader 

Professionals Clerks Business/service Agriculture Manufacturing 

 (1) (2) (3) (4) (5) (6) (7) 
Panel A: Total immigration 
PM2.5 -0.4080*** -0.6566*** -0.5041*** -0.4939*** -0.9402*** -0.1497** -0.7675*** 

 (0.0975) (0.1461) (0.1158) (0.1116) (0.1299) (0.0584) (0.1103) 
Mean [SD] of D.V. 7.32 [10.97] 11.49 [15.49] 9.46 [12.85] 9.10 [13.07] 15.08 [16.99] 2.78 [8.02] 11.56 [15.39] 
Panel B: Within-province immigration 
PM2.5 -0.3568*** -0.5940*** -0.4341*** -0.4224*** -0.7451*** -0.0684* -0.6993*** 

 (0.0687) (0.1278) (0.1020) (0.0980) (0.1033) (0.0380) (0.0750) 
Mean [SD] of D.V. 4.83 [7.24] 9.05 [12.82] 7.90 [11.11] 7.79 [11.39] 10.19 [12.42] 1.79 [5.69] 7.36 [10.26] 
Panel C: Across-province immigration 
PM2.5 -0.0511 -0.0626 -0.0700** -0.0715* -0.1951*** -0.0813** -0.0682 

 (0.0468) (0.0498) (0.0325) (0.0368) (0.0592) (0.0395) (0.0663) 
Mean [SD] of D.V. 2.49 [5.71] 2.44 [5.82] 1.56 [3.77] 1.31 [3.93] 4.89 [8.88] 0.99 [4.41] 4.20 [8.59] 
Observations 7,889 7,319 7,776 7,583 7,782 7,811 7,882 
Number of counties 2,637 2,616 2,634 2,623 2,629 2,637 2,636 
KP F-statistic 245.8 240.2 245.2 245.8 245.6 241.7 245.8 

Notes: The dependent variable is immigration ratio, which is defined as the percent of population aged 15 to 60 entering the county with their hukou in the origin. Panel A 
includes total immigration, and Panels B and C include within-province and across-province immigration respectively. Column (1) includes all occupations. Columns (2) 
– (7) include each occupation. See detailed description of each occupation at http://ms.nvq.net.cn/nvqdbApp/htm/fenlei/index.html. Regression models are estimated using 
Equation (1) and include county fixed effects, period fixed effects, and weather controls. Regression models are weighted using population aged 15-60 for each group in 
1995. Standard errors are listed in parentheses and clustered at county level. * p <0.10, ** p <0.05, *** p <0.01.
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Table A6: The Effect of Air Pollution on Migration: By Cities with and without 
API Data 

 (1) (2) (3) (4) (5) (6) 
Panel A: Net outmigration ratio for cities with API data 
PM2.5 0.5314*** 1.0016 1.0368*** 0.6605*** 0.6422*** 0.6003*** 

 (0.1660) (3.7282) (0.3567) (0.1421) (0.1423) (0.1539) 
Mean [SD] of D. V. -9.17 [16.15] -11.99 [19.68] -11.17 [18.44] -9.87 [18.14] -9.75 [18.21] -9.77 [18.00] 
Mean [SD] of PM2.5 53.08 [27.93] 62 [26.61] 63.09 [25.76] 60.91 [26.35] 61.22 [26.30] 60.84 [26.16] 
Panel B: Immigration ratio for cities with API data 
PM2.5 -0.3246** -1.0564 -0.4114* -0.5227*** -0.5133*** -0.5168*** 

 (0.1329) (4.7084) (0.2100) (0.1784) (0.1773) (0.1859) 
Mean [SD] of D. V. 6.01 [10.73] 14.25 [17.90] 11.85 [16.36] 10.65 [15.67] 10.51 [15.58] 10.53 [15.57] 
Mean [SD] of PM2.5 53.08 [27.93] 62 [26.61] 63.09 [25.76] 60.91 [26.35] 61.22 [26.30] 60.84 [26.16] 
KP F-statistic 250.7 20.03 43.15 81.28 64.64 81.65 
Observations 7,911 1,326 1,956 2,193 2,232 2,238 
Number of counties 2,637 442 652 731 744 746 
Number of cities 336 47 72 84 85 86 

Panel C: Net outmigration ratio for cities without API data 
PM2.5 0.5314*** 0.3297** 0.3468** 0.3253** 0.3392** 0.3220** 

 (0.1660) (0.1682) (0.1661) (0.1590) (0.1653) (0.1446) 
Mean [SD] of D. V. -9.17 [16.15] -8.6 [15.28] -8.51 [15.27] -8.90 [15.32] -8.94 [15.27] -8.93 [15.36] 
Mean [SD] of PM2.5 53.08 [27.93] 51.28 [27.84] 49.79 [27.83] 50.08 [27.94] 49.88 [27.90] 50.02 [28.01] 
Panel D: Immigration ratio for cities without API data 
PM2.5 -0.3246** -0.1977** -0.2342** -0.2382*** -0.2351*** -0.2420*** 

 (0.1329) (0.0819) (0.0940) (0.0843) (0.0851) (0.0845) 
Mean [SD] of D. V. 6.01 [10.73] 4.35 [7.57] 4.09 [7.08] 4.23 [7.32] 4.24 [7.34] 4.22 [7.33] 
Mean [SD] of PM2.5 53.08 [27.93] 51.28 [27.84] 49.79 [27.83] 50.08 [27.94] 49.88 [27.90] 50.02 [28.01] 
KP F-statistic 250.7 206.8 182.6 167.8 53.74 172.3 
Observations 7,911 6,585 5,955 5,718 5,679 5,673 
Number of counties 2,637 2,195 1,985 1,906 1,893 1,891 
Number of cities 336 289 264 252 251 250 

Notes: This table reports the effect of air pollution on migration for cities with API data (Panels A and B) and for cities without API 
data (Panels C and D). Dependent variables are net outmigration ratio in Panels A and C and immigration ratio in Panels B and C. 
Column (1) is the baseline model which includes all cities. Since 2000, 47 cities have publicly available API data. Column (2) of 
Panels A and B include these 47 cities, and column (2) of Panels C and D include the remaining 289 cities. The number of cities 
with API data are increased after 2000. Therefore, the number of cities in columns (3) – (6) are increased in Panels A and B. 
Regression models are estimated using Equation (1) and include county fixed effects, period fixed effects, and weather controls. 
Regression models are weighted using population aged 15-60 in 1995. Standard errors are listed in parentheses and clustered at 
county level. * p <0.10, ** p <0.05, *** p <0.01. 
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Table A7: The Effect of Inversions on SO2 (First Stage) 

 (1) (2) 
Thermal inversions 24.9499*** 28.2183*** 

 (2.3596) (2.4171) 
KP F-statistics 399.2 444.6 
Observations 7,911 7,911 
County FE Yes Yes 
Period FE Yes Yes 
Weather controls Yes Yes 
Weighting No Yes 

Notes: The dependent variable is SO2. Regression models are 
estimated using Equation (2) and include county fixed effects, 
period fixed effects, and weather controls. Regression models 
are weighted using population aged 15 to 60 in 1995 in column 
(2). Standard errors are listed in parentheses and clustered at 
county level. * p <0.10, ** p <0.05, *** p <0.01. 
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Table A8: The Effect of SO2 on Migration 

 FE IV FE IV 

 (1) (2) (3) (4) (5) (6) 
Panel A: Net Outmigration Ratio 

 No death adjustment Death adjustment 
SO2 0.8243*** 1.8285*** 1.5000*** 0.8439*** 1.8749*** 1.5444*** 

 (0.1204) (0.5268) (0.5068) (0.1213) (0.5332) (0.5121) 
KP F-statistics ---- 111.1 135.4 ---- 111.1 135.4 
Panel B: Destination-based Immigration Ratio 
SO2 0.3603*** -0.7936*** -0.9435*** ---- ---- ---- 

 (0.0675) (0.2215) (0.2487) ---- ---- ---- 
KP F-statistics ---- 111.2 135.4 ---- ---- ---- 
Observations 7,911 7,911 7,911 7,911 7,911 7,911 
County FE Yes Yes Yes Yes Yes Yes 
Period FE Yes Yes Yes Yes Yes Yes 
Weather controls Yes Yes Yes Yes Yes Yes 
Weighting Yes No Yes Yes No Yes 

Notes: The dependent variables are net outmigration ratio in Panel A and immigration ratio in Panel B. Through columns 
(1) – (3), net outmigration ratio is defined as the percent of population aged 15 to 60 leaving the county net of new arrivals, 
without death adjustment. Through columns (4) – (6), net outmigration ratio is defined as the percent of population aged 
15 to 60 leaving the county net of new arrivals and death. The immigration ratio is defined as the percent of population 
aged 15 to 60 entering the county with their hukou in the origin. Columns (1) and (4) are fixed effects models, and columns 
(2) – (3) and (5) – (6) are IV models. Regression models are weighted using population aged 15 to 60 in 1995 in columns 
(1), (3), (4), and (6). Standard errors are listed in parentheses and clustered at county level. * p <0.10, ** p <0.05, *** p 
<0.01. 
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Table A9: Multiple Pollutant Models 

 Net outmigration ratio Immigration ratio 
 Multiple Single Multiple Single 

 pollutant 
models 

pollutant 
index 

 pollutant 
models 

pollutant 
index 

 (1) (2) (3) (4) 
PM2.5 0.0416 ---- -0.5454* ---- 

 (0.6418) ---- (0.2809) ---- 
SO2 1.7405 ---- 0.9236 ---- 

 (1.8227) ---- (0.7973) ---- 
AQI ---- 0.4269*** ---- -0.2611*** 

 ---- (0.1415) ---- (0.0660) 
KP F-statistics 38.13 252.5 38.13 252.5 
SW F-PM2.5 104.02 ---- 104.02 ---- 
SW F-SO2 83.51 ---- 83.51 ---- 
p-value of joint sig. 0.0003 ---- 0.0008 ---- 
Observations 7,911 7,911 7,911 7,911 
County FE Yes Yes Yes Yes 
Period FE Yes Yes Yes Yes 
Weather controls Yes Yes Yes Yes 
Weighting Yes Yes Yes Yes 
Mean [SD] of PM2.5 ---- 53.51 [27.69] ---- ---- 
Mean [SD] of SO2 ---- 15.49 [11.87] ---- ---- 
Mean [SD] of AQI ---- 71.93 [35.95] ---- ---- 

Notes: The dependent variables are net outmigration ratio in columns (1) and (2), and immigration 
ratio in columns (3) and (4). Net outmigration ratio is defined as the percent of population aged 15 
to 60 leaving the county net of new arrivals and deaths. Immigration ratio is defined as the percent 
of population aged 15 to 60 entering the county with their hukou in the origin. Regression models 
are estimated using Equation (1) and include county fixed effects, period fixed effects, and flexible 
weather controls. Regression models are weighted using population aged 15-60 in 1995. In columns 
(1) and (3), we include both PM2.5 and SO2 in one regression and instrument them using both thermal 
inversion strengths and numbers. In columns (2) and (4), we construct a single pollution index – Air 
Quality Index (AQI) – to incorporate two pollutants into one measurement. AQI is then instrumented 
by thermal inversion strengths. SW F-statistics are Sanderson-Windmeijer F-statistics for test of 
weak instruments for each endogenous variable. The Stock-Yogo weak identification F test critical 
values for single endogenous regressor at 10% maximal IV size is 19.93. Standard errors are listed 
in parentheses and clustered at county level. * p <0.10, ** p <0.05, *** p <0.01. 
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Table A10: The Effect of Air Pollution on Firm Migration 

 (1) (2) (3) (4) (5) 

 Total State-owned Private Foreign Hybrid 
Panel A: Outmigration ratio (%) 
PM2.5 0.0612 0.3035 -0.1794 -0.0402 0.1361 

 (0.2218) (0.2646) (0.2778) (0.2956) (0.4690) 
Observations 4,972 4,350 4,480 3,296 3,916 
Number of counties 2,486 2,175 2,240 1,648 1,958 
KP F-statistics 59.43 64.06 78.85 53.70 63.25 
Mean [SD] of Dep. Var. 2.01 [8.27] 2.03 [9.83] 1.77 [10.48] 2.74 [10.86] 2.18 [14.91] 
Panel B: Immigration ratio (%) 
PM2.5 -0.3384 0.1861 0.2225 0.4398 -0.6094 

 (0.2755) (0.3404) (0.2431) (0.3847) (0.4101) 
Observations 4,972 4,350 4,480 3,296 3,916 
Number of counties 2,486 2,175 2,240 1,648 1,958 
KP F-statistics 59.43 64.06 78.85 53.70 63.25 
Mean [SD] of Dep. Var. 2.21 [8.08] 2.53 [9.81] 1.84 [9.48] 2.61 [10.01] 2.21 [8.98] 
Panel C: Net outmigration ratio (%) 
PM2.5 0.3996 0.1174 -0.4018 -0.4800 0.7456 

 (0.3401) (0.3598) (0.3448) (0.4966) (0.6462) 
Observations 4,972 4,350 4,480 3,296 3,916 
Number of counties 2,486 2,175 2,240 1,648 1,958 
KP F-statistics 59.43 64.06 78.85 53.70 63.25 
Mean [SD] of Dep. Var. -0.20 [9.65] -0.50 [12.22] -0.07 [12.97] 0.13 [12.78] -0.22 [16.15] 
County FE Yes Yes Yes Yes Yes 
Period FE Yes Yes Yes Yes Yes 
Weather Controls Yes Yes Yes Yes Yes 

Notes: Unit of observation is county-period. The firm data are from the Chinese Industrial Enterprises 
Database, which covers all stated-owned and non-state firms with sales above CNY 5 million from 1998 to 
2007. We define 1998-2002 as the first period, and 2003-2007 as the second period. The dependent variable 
in Panel A is the ratio between number of firms moving out from a county and number of total firms in that 
county in each period. The dependent variable in Panel B is the ratio between number of firms moving into 
a county and number of total firms in that county in each period. The dependent variable in Panel C is the 
ratio between number of firms moving out net of firms moving in and number of total firms in that county in 
each period. Regression models are estimated using Equation (1) and include county fixed effects, period 
fixed effects, and weather controls. Standard errors are listed in parentheses and clustered at county level. * 
p <0.10, ** p <0.05, *** p <0.01. 
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Table A11: Statistical Test Between AOD-based and Ground-based Pollution Data 

 (1) (2) (3) (4) (5) (6) (7) 
 Station AOD Unconditional 

difference 
Conditional 
difference 

Conditional 
difference 

Conditional 
difference 

Conditional 
difference 

2013  
PM2.5 55.0431 73.1464 -18.1034*** -0.0431 0.0547 -0.0411 -0.0444 
 (29.5806) (32.1741) (0.7907) (0.3641) (0.6014) (0.3219) (0.3642) 
Obs 2,495 2,495 2,495 2,495 1,162 2,606 2,495 
2014  
PM2.5 62.7323 73.6688 -10.9364*** 0.0118 0.2181 -0.0081 0.0124 
 (19.6609) (31.9031) (0.4666) (0.1891) (0.3297) (0.1652) (0.1892) 
Obs 2,500 2,500 2,500 2,500 1,194 2,608 2,500 
2015  
PM2.5 49.9473 72.4348 -22.4875*** 0.0287 -0.3274 0.0496 0.0295 
 (16.2949) (33.0719) (0.4700) (0.2139) (0.3399) (0.1952) (0.2140) 
Obs 2,500 2,500 2,500 2,500 1,194 2,608 2,500 
All  
PM2.5 55.9081 73.0833 -17.1751*** -0.0008 -0.0188 0.0001 -0.0007 
 (23.1578) (32.3867) (0.3479) (0.1541) (0.2531) (0.1370) (0.1543) 
Obs 7,495 7,495 7,495 7,495 3,550 7,822 7,495 
County FE No No No Yes Yes Yes Yes 
Year FE No No No Yes Yes Yes Yes 
Radius 100 km 100 km 100 km 100 km 50 km 150 km 100 km 
Weighting No No No No No No Yes 

Notes: Unit of observation is county-year. Columns (1) and (2) reports the national average of AOD-based data and 
station-based data. Column (3) reports the unconditional difference. Columns (4) – (7) reports the difference conditional 
on county fixed effects and year fixed effects but vary across radii for the interpolation. Standard deviations are listed in 
parentheses in columns (1) and (2) and standard errors are listed in parentheses through columns (3) – (7) and are clustered 
at county level. * p <0.10, ** p <0.05, *** p <0.01. 
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