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1 Introduction

Extreme weather events can have devastating effects and were responsible for over $300 billion
in damages in the United States in 2017 alone.! Despite significant research on extreme weather
effects on real economic activity and household, firm, and financial institution decision making,
little is known about uncertainty surrounding extreme weather.? Given that uncertainty affects
real economic activity and decision making (see, for example, Bernanke (1983); Bloom, Bond, and
van Reenen (2007); Bloom (2009)), a comprehensive assessment of the economic effects of extreme
weather events requires understanding the uncertainty dynamics surrounding them.

This paper examines extreme weather uncertainty resulting from hurricanes through the lens
of financial markets. Asset prices are an ideal instrument to assess the dynamics and magnitude
of extreme weather uncertainty because of the frequency and scale at which financial data are
available and the fact that the investor behavior underlying the asset prices is guided by financial
incentives. We distinguish between two components of extreme weather uncertainty: (a) the “land-
fall uncertainty” regarding where, when, and whether a hurricane will make landfall, and (b) the
“/mpact uncertainty” about a hurricane’s effect conditional on it making landfall.?

We combine firm establishment and sales data at the county level with hurricane forecast and
damage data in order to identify firms that operate within regions (potentially) exposed to a
particular hurricane. We use these data to test two hypotheses regarding how financial markets
price a hurricane’s landfall and impact uncertainty.

Our first hypothesis is that immediately after a hurricane has made landfall, implied volatilities
of options of firms in the disaster region are elevated due to impact uncertainty. Implied volatility
is a proxy for uncertainty (see, for example, Bloom (2009) and Kelly, Pastor, and Veronesi (2016))
as it captures the investors’ expectation of volatility. Our results support this first hypothesis.

Indicative of substantial impact uncertainty, we find that immediately after hurricane landfall the

!The damage estimate is from the National Oceanic and Atmospheric Administration (NOAA) and can be found
here:
https://www.climate.gov/news-features/blogs/beyond-data/2017-us-billion-dollar-weather-and- climate-disasters-historic-year.

2For research on the real effects and decision making of extreme weather events, see, for example, Belasen and
Polachek (2008); Imberman, Kugler, and Sacerdote (2012); Barrot and Sauvagnat (2016); Bernile, Bhagwat, and Rau
(2017); Dessaint and Matray (2017); Brown, Gustafson, and Ivanov (2017); Hong, Li, and Xu (2019).

3We focus on hurricanes because they develop and resolve over fairly short but well-defined time frames, NOAA
publishes a range of forecast data, and they are likely to garner investor attention due to significant impacts and
extensive media coverage. However, our framework can be applied to other extreme weather events like snow storms
and severe floods, which are also subject to landfall and impact uncertainty.


https://www.climate.gov/news-features/blogs/beyond-data/2017-us-billion-dollar-weather-and-climate-disasters-historic-year

implied volatility of options of firms in the disaster region are between 5 and 10 percent higher
than before the hurricane’s inception. This finding is surprisingly robust across industries, holds
within industries, and for different time periods. To analyze the resolution of impact uncertainty,
we examine the post-landfall stock price reactions of firms with a physical presence in a hurricane
disaster region. In the short-term, the abnormal returns of firms in the disaster region are not
significantly different from the control firms’ abnormal returns, but the differences are substantial
in the long-term. Further, the long-term differences are more pronounced for the underperforming
stocks. Over the 120 trading days after hurricane landfall, the 10'" percentile of the abnormal
return distribution for firms in disaster regions is 12 to 14 percentage points lower than the 10"
percentile of the abnormal return distribution of the control firms. Our results are consistent with
a slow resolution of impact uncertainty, in line with investors only learning over time the effects of
a particular hurricane and which firms were most affected by it.

Our second hypothesis is that investors pay attention to hurricane forecasts before landfall and
demand compensation for the landfall uncertainty and the potential impact uncertainty. This hy-
pothesis implies that hurricane forecasts contain valuable information for investors and, if financial
markets are efficient, this information should be reflected in asset prices. Using NOAA forecasts
issued in the days or weeks leading up to a hurricane’s landfall or dissipation (in the case of a
hurricane that “missed”) to measure landfall uncertainty, we find implied volatilities increase and
stock returns decrease consistent with Pastor and Veronesi (2012, 2013) even at low landfall prob-
abilities of 10 percent and below.* Further, consistent with our framework, the combined landfall
uncertainty and expected impact uncertainty can cause implied volatility to be higher before land-
fall compared to shortly after landfall, when landfall uncertainty is fully resolved and only impact
uncertainty remains.

We build on our main results with several key extensions. First, given anecdotal evidence that
hedge funds obtain information on hurricane forecasts from sources other than the NOAA,> we test
whether financial markets can improve upon NOAA hurricane forecasts by estimating if firms that

are not in the forecasted path of a hurricane but end up in the disaster region also see increases

4Unlike at the aggregate market level, stock returns and volatility at the firm level generally exhibit positive
contemporaneous correlation as shown in Duffee (1995); Albuquerque (2012); Grullon, Lyandres, and Zhdanov (2012).
As such, the negative return-volatility relationship documented at the aggregate levelis unlikely to drive our results.

®See, for example, the discussion of the hedge fund with the name Nephila by Michael Lewis here: https: //www.
nytimes.com/2007/08/26 /magazine/26neworleans-t.html?pagewanted=all.


https://www.nytimes.com/2007/08/26/magazine/26neworleans-t.html?pagewanted=all
https://www.nytimes.com/2007/08/26/magazine/26neworleans-t.html?pagewanted=all

in the implied volatility of their options. We fail to reject the null hypothesis that markets do not
reflect superior information to NOAA forecasts on hurricanes.

In light of recent improvements in hurricane forecast accuracy® and ongoing developments that
could actually reduce the forecast accuracy going forward,” for our second extension, we examine
the potential benefits of improving NOAA forecast accuracy in this context. We estimate the
additional change in implied volatility due to forecast errors for firms for which the forecasted
exposure was larger (smaller) than the eventual exposure to the disaster region. We find large
average effects of up to 150 basis points for thousands of firms over the sample period from 2007
to 2017. This result speaks to the outsized importance of NOAA’s hurricane forecasts for financial
markets and is valuable information for legislators who make budgetary decisions.

Third, although we have focused our main results on the broad universe of US public firms
(excluding financial firms), we conduct a separate analysis on insurance firms. Despite limitations
due to the fairly small number of public property and casualty insurance firms with liquid options
and stocks, and regional exposure (fraction of written premiums) data being at the state rather
than county level, we find that single stock options of property and casualty insurance firms re-
flect substantial impact uncertainty immediately following a hurricane landfall, increasing implied
volatilities by as much as 40 percent.

Our paper makes several contributions that build upon each other. We begin by presenting a
novel framework to think about the uncertainty before and after extreme weather events. Second,
our results show that investors are attentive to firm exposures to hurricanes even before land-
fall.® Third, our estimates imply that extreme weather uncertainty impose significant financial
costs that should be taken into account when assessing the aggregate damage of extreme weather
events. Fourth, given that research has shown that other types of uncertainty can affect a firm’s

decision making and that major events like elections yield similar magnitudes of uncertainty,’ the

5Alley, Emanuel, and Zhang (2019) show that hurricane forecasts have indeed improved dramatically in recent
decades. In particular, they find that “modern 72-hour predictions of hurricane tracks are more accurate than 24-hour
forecasts were 40 years ago.”

"Spectrum auctions for the 5G network may overlap with the frequency range in which water va-
por emits, thereby limiting the ability of forecasters to collect an important source of data for cur-
rent forecast models (see this discussion in The Guardian: https://www.theguardian.com/world/2019/may/04/
5g-mobile-networks-threat-to-world-weather-forecasting.)

8Investor attention to extreme weather risk is important for correctly pricing assets with extreme weather and
climate change exposure and reduces the risks of sudden large price corrections that could disrupt financial stability
(see, for example, Carney (2015)).

9Uncertainty has been shown to reduce firm investments by Bernanke (1983), Bloom, Bond, and van Reenen


https://www.theguardian.com/world/2019/may/04/5g-mobile-networks-threat-to-world-weather-forecasting.
https://www.theguardian.com/world/2019/may/04/5g-mobile-networks-threat-to-world-weather-forecasting.

large economic magnitudes of our estimated responses together with the slow resolution of impact
uncertainty suggest that extreme weather uncertainty is an important factor for real outcomes.
The remainder of this paper is structured as follows. We begin with a discussion of related
literature in Section 2. Then we describe our empirical design and datasets in Sections 3 and 4,
respectively. We present our main results in Section 5, followed by extension in Section 6. We

conclude in Section 7.

2 Related literature

Our paper ties in to several diverse bodies of literature. By analyzing extreme weather uncer-
tainty, our paper contributes to the uncertainty literature, in which several papers have focused
on economic policy uncertainty and its effects on firms (see, for example, Bloom, Bond, and van
Reenen (2007) and Bloom (2009)). Other researchers have focused on political uncertainty proxied
by elections and how they affect firm investments and financial markets (see, for example, Julio
and Yook (2012); Kelly, Pastor, and Veronesi (2016); Jens (2017)). Our paper complements this
body of work by showing that extreme weather uncertainty is a different but important source
of uncertainty that affects prices in financial markets. Moreover, in the case of elections, there is
uncertainty about outcomes, but generally not about when and whether the elections themselves
will occur because they are scheduled in advance.'® Our analysis introduces an additional layer of
complexity as we separately examine the effects of the uncertainty about the landfall of a hurricane
and the uncertainty about the impact of the event itself. Our paper differs from the research on
macroeconomic uncertainty and economic growth (see, for example, Jurado, Ludvigson, and Ng
(2015); Baker, Bloom, and Davis (2016); Baker, Bloom, and Terry (2018); Dew-Becker, Giglio, and
Kelly (2018)) in that our analysis is at the firm level and more granular than the macroeconomy as
a whole, which is important as extreme weather events are generally local phenomena. Also, the

uncertainty shock in our case, the hurricane, is exactly determined.

(2007), and Julio and Yook (2012). Our on average 5 to 10 percent increase in implied volatility is of a similar
magnitude to the increase in implied volatility found by Kelly, Pastor, and Veronesi (2016) around major political
elections.

YEmpirical work on political uncertainty focuses on scheduled elections in order to isolate political uncertainty
from economic uncertainty. Unscheduled elections and regime changes can be precipitated by economic conditions.
In contrast, hurricanes are exogenous to economic uncertainty (economic conditions do not make hurricanes more
likely), so we do not face this identification issue.



Further, by showing that extreme weather events cause substantial uncertainty in economic
regions before and after landfall, our work proposes an additional factor that should be considered
by the literature that examines extreme weather events’ real effects and their impact on economic
agents’ decision making. This growing literature includes work that examines the effects of extreme
weather on labor markets and schooling (see Belasen and Polachek (2008) and Imberman, Kugler,
and Sacerdote (2012)). Barrot and Sauvagnat (2016) find that shocks of extreme weather events
propagate in customer-supplier firm networks. Bernile, Bhagwat, and Rau (2017) analyze the re-
lationship between risk taking behavior and the early-life disaster experiences of CEOs. Dessaint
and Matray (2017) show that managers overreact to hurricane risks after experiencing a hurri-
cane. Brown, Gustafson, and Ivanov (2017) report that firms experience decreased cash flows after
extreme snowfall events and that they respond by increasing their use of credit lines. Looking
at storm-level total damages, Martinez (2018) finds that damages increase with forecast error of
landfall location 12 hours before landfall. Roth Tran and Wilson (2018) find that hurricanes have a
wide range of impacts on local economic activity, including on employment, population, and home
prices.

Finally, this paper introduces a novel topic to an emerging literature on climate finance that
includes early empirical work on how Florida temperature fluctuations affect orange juice futures
prices (see Roll (1984) and Boudoukh, Richardson, Shen, and Whitelaw (2007)) and how the use
of a time series forecasting approach is useful for pricing weather derivatives (see Campbell and
Diebold (2005)). Our research contributes to three branches of the climate finance literature.

First, by examining hurricane effects, this paper builds on recent papers in the finance liter-
ature focused on extreme weather events and investor attention. Hong, Li, and Xu (2019) show
that drought indices are predictive of food company stock returns, indicating that investors are
inattentive to droughts’ impacts on food companies. Choi, Gao, and Jiang (2018) examine how
investors’ climate change beliefs when temperatures are warmer than usual and find evidence of
a positive relationship. Addoum, Ng, and Ortiz-Bobea (2019) examine whether firm earnings are
affected by high temperatures and how analysts and investors react to temperature shocks.

Second, our paper adds to climate finance papers that develop hedging strategies. While Baker,
Hollifield, and Osambela (2018) and Roth Tran (2018) present theoretical models in which green

or emission-oriented investors can hedge risks by investing in polluters, Andersson, Bolton, and



Samama (2016) show empirically that investors can hedge against potential future prices on carbon
emissions by investing in a decarbonized index. Engle, Giglio, Kelly, Lee, and Stroebel (2018)
develop a climate change news index and assess strategies that can hedge an investor against such
news. In contrast to these papers, we focus on market dynamics that reflect investor behavior
around specific disaster events that occur at a local level.

Third, by using daily hurricane forecasts from NOAA, this paper adds to recent climate finance
research that analyzes how NOAA forecasts are reflected in asset prices. Drawing mixed conclu-
sions, several papers (see Bernstein, Gustafson, and Lewis (2018); Giglio, Maggiori, Rao, Stroebel,
and Weber (2018); Murfin and Spiegel (2018)) use NOAA sea level rise predictions to examine
whether residential real estate prices reflect sea level rise risks. Our use of NOAA forecasts is sub-
stantially different, because for hurricanes we can observe multiple isolated events from inception to
resolution, whereas NOAA’s forecasts for sea level rise are long-term and cannot yet be compared
to realizations. We are thus able to show not only that price reactions in options and stocks are
consistent with investors paying attention to NOAA’s hurricane forecasts, but also assess whether

this attention is in line with the realized outcomes.

3 Empirical design

3.1 Landfall uncertainty and impact uncertainty

Our framework distinguishes between two types of uncertainty that surround a hurricane: impact
uncertainty and landfall uncertainty. While this paper focuses on hurricanes as an example for
an extreme weather event due to the availability of high quality data, the framework of landfall
and impact uncertainty can also be applied to other types of extreme weather events. The impact
uncertainty is the uncertainty about a hurricane’s impact on firms with exposure to the landfall
area. More formally, if hurricane h is expected to make landfall at time ¢+ 1 and an all-equity firm

1’s stock return at ¢t + 1 is given by

Tit+1 = €41 + Ont41Giht+1, (1)



where € ~ N(0,0?%) represents a random shock to the firm’s return at time ¢ + 1 with a mean
of zero and variance of o2. The random variable g;p 11 ~ N (,ug,ag) is independent of ¢ and
captures the impact of the hurricane on the value of firm ¢, conditional on hurricane landfall in
the firm’s geographic region. The random variable 8 captures whether or not the firm is hit by the
hurricane and has a Bernoulli distribution or, equivalently, a binomial distribution with one draw,
0 ~ B(1,¢), where Pr(f =1)=1—Pr(0 =0) = ¢ and 0 < ¢ < 1. The product of the two random
variables, 05, 1+16;.n,+1, is the component of the return attributable to the hurricane.

Conditional on hurricane landfall at time ¢ 4 1, 0‘3 represents the impact uncertainty. Defining
uncertainty as the variance of an unpredictable disturbance is in line with Pastor and Veronesi (2012
and 2013) and Jurado, Ludvigson, and Ng (2015). In this framework, a hurricane landfall introduces
uncertainty for the local economy and firms. Predicting at the time of landfall which firms will be
most affected could be challenging for several reasons. First, the number of hurricane landfalls for a
given local economy are not sufficient to predict the exact economic effect. For example, Houston,
TX, had not experienced a hurricane for more than two decades before Hurricane Harvey hit in
2017. Second, a hurricane’s impact on individual firms operating within a disaster region is to a
large extent unpredictable. Knowing ex-ante exactly which areas will actually flood in a particular
storm, the extent of power outages, or whether a levy will break, is challenging if not impossible.

Prior to the potential hurricane landfall, there is a second source of uncertainty which we
call landfall uncertainty about whether the hurricane will make landfall. More generally, in other
contexts, this corresponds to the uncertainty of the incidence or occurrence of an event or the
uncertainty on the extensive margin. Similarly, impact uncertainty can be thought of as uncertainty
on the intensive margin. At time ¢, we can decompose the uncertainty generated for the firm from
the hurricane into expected impact uncertainty and landfall uncertainty as follows.

The expected return conditional on whether or not landfall occurs is, intuitively, Ey[r;;41]0 =

1] = pg and Ey[r;141|60 = 0] = 0. The conditional variance of firm i’s return is,

Vary(riz4116 =0) = o2, (2)

Vary(rig|0 =1) = o* + 03. (3)



Then, we can find the expected conditional variance!' and the variance of the conditional expecta-

tion,!?

EVary(ri41)0)] = o* + gbaz, (4)

Var(Bi[rie1]0]) = ¢(1 — ) ;. ()

Applying the law of total variance, we can derive Var(r;;+1) using (4) and (5),

Vary(rizs1) = E[Vary(rig+100)] + Var(Eiri110]),

=0 + g0 + ¢(1 — P)pg. (6)

Landfall uncertainty is captured in the total variance by the third term in equation (6), ¢(1 —
0) ,uz. For a given u4 # 0, landfall uncertainty is highest when the probability of landfall, ¢ = 0.5.
When gy = 0, there is no contribution from landfall uncertainty to total variance at time ¢. In this
case, Vare(r;+1) varies with ¢ purely due to the expected impact uncertainty, qﬁag.

Figure 1 depicts how the total variance prior to landfall (Var(r;41)) varies with the probability
of hurricane landfall (¢). The figure has parameters o = 0.4 and o, = 0.05. The four dashed lines
have ji, absolute values of 0.1, 0.07, 0.05, and 0, respectively. The solid line shows the level of
variance following hurricane landfall, Var(r; ;1110 = 1) = 02 + 03.

Depending on the the parameter values of 1, and 03, as ¢ varies from 0 to 1, prior to landfall,
the relative contribution to total variance from the landfall uncertainty and the expected impact
uncertainty will vary. All else equal, as ji4 increases, the contribution of landfall uncertainty to total
variance increases. In Figure 1, landfall uncertainty at a given ¢ is the vertical distance between a
curve and the dot-dash (red) straight line depicting Var(r;41) when pg = 0. Vary(riz1) will in
fact be greater than Vari(r; 11|60 = 1) when |pq| > ﬁag. In the figure, this is the case where the
dashed lines are above the solid black line. When ¢ > 0 and at least one of p, or o4 is non-zero,

Vary(r;t41) is greater than Vary(r;¢41|0 = 0) = o2

YEVar(ri110)] = (1 — ¢)o® + ¢(o® + 03) = 0° + ¢o
P E[E[ri110]] = dpg,
Var(E[rii1|0]) = E[(Bi[ri 0] — dpg)?] = ¢(1g — dpg)* + (1 — ¢)(0 — dpg)? = ¢(1 — @) 3.



3.2 Identification strategy

Changes to the expected volatility of stock returns due to a hurricane event can be measured by the
changes to the implied volatility of the stock’s options. In our analysis, we use single stock options
of firms that are in the damage region or forecasted path of a hurricane to estimate treatment
effects, while using single stock options of firms unaffected by a hurricane as controls.

Because an extreme weather event like a hurricane is generally a local phenomenon, our identifi-
cation strategy is based on selecting counties where a hurricane has made (or is predicted to make)
landfall. For each hurricane, we have data on which counties were damaged and which counties lay
in the forecasted path of the hurricane on a given day. A firm’s exposure to these counties are then
measured through the share of establishments or sales located in such counties. For firm ¢ on day

T}, the landfall day of hurricane h, the exposure to counties damaged by hurricane h is given by

HurricaneDamageExposure; T, = Z(FirmC’ountyEwposureLTh,c X ICEDTh ), (7)

c

where FirmCountyExposure; T,  is the share of firm ¢’s establishments (sales) located in county c,
and Dr, is the set of counties damaged by hurricane h. Therefore, a firm’s exposure to a hurricane
is a continuous variable that can range from 0 percent to 100 percent. To measure a firm’s exposure
to a forecasted hurricane path, we can use the set of counties in the forecasted path of a hurricane

I' days before the landfall or dissipation of the hurricane, denoted Fr, _r, in place of Dr,:

HurricaneForecast Exposure; 1, 1 = Z(FirmCountyEa;posureLTh_p7c X ICGFTh—I‘)' (8)

C

For each hurricane, there are two groups of firms, those with and without exposure, with the
degree of exposure being heterogeneous. Therefore, our analysis can be thought of as a differences-
in-differences setting, where each hurricane represents a treatment, and we jointly estimate the
treatment effect across all the hurricanes.

Because a hurricane has an identified inception date, we can isolate and estimate a hurricane’s
impact uncertainty, described in Section 3.1 by comparing the implied volatility of firms exposed to
the landfall area shortly after landfall to the implied volatility before the inception of the hurricane.

The implied volatility dynamics of the options of firms with zero exposure over the same time

10



window comprise the control set. To measure landfall uncertainty, we rely on hurricane forecasts
from NOAA. NOAA releases forecasts for the path of a hurricane starting from the hurricane’s
inception. For each hurricane, these forecasts provide a landfall probability for each county and
each day since the inception of the hurricane. The landfall uncertainty defined in Section 3.1, can

be computed based on the probabilities issued by NOAA.

4 Data and summary statistics

We combine data from a range of sources. We use data both from the Federal Emergency Manage-
ment Agency (FEMA) and the Spatial Hazard Events and Losses Database for the United States
(SHELDUS) when determining which counties are affected by hurricanes. We identify county level
pre-landfall hurricane risk levels using archived forecasts from the NOAA. We combine these data
sources with National Establishment Time-Series (NETS) data on locations of firm establishments
and sales to identify firm exposure to hurricanes. And finally, our stock and option outcome data
come from CRSP-Compustat and OptionMetrics, respectively. We describe each of these data

sources below.

4.1 Hurricane damages

We use FEMA Disaster Declarations Summary data in combination with Spatial Hazard Events
and Losses Database for the United States (SHELDUS) data to identify counties that experienced
significant hurricane damages. We create an indicator that equals 1 if a county received a FEMA
disaster declaration qualifying residents for individual and household program (IHP) assistance due
to a hurricane. Counties are only eligible for IHP aid if they sustain significant damage on a per
capita basis.

We build on the basic disaster indicator based solely on FEMA declarations by combining it with
SHELDUS data in order to allow for the possibility that there are areas with significant damages
which do not receive IHP aid.'® SHELDUS data draw upon National Centers for Environmental

Information (formerly National Climatic Data Center) Storm Data and Unusual Weather Phenom-

13A reason for why we may see SHELDUS damages in excess of reported FEMA declaration thresholds without
seeing FEMA declarations could be because of measurement errors and disagreements or if FEMA chooses to diverge
from its reported guidelines.

11



ena for hurricanes to provide county level per capita estimates of damages for named hurricane
events. We set our second disaster indicator variable equal to 1 if there was a FEMA declaration
for IHP aid or if the SHELDUS-reported per capita damages exceeded the published threshold
for FEMA to provide IHP aid. Summary statistics are provided in Table 1. Figure 2 shows the
number of times each county received an IHP declaration from FEMA for a hurricane between 2007
and 2017, while Figure 3 shows which counties received THP aid or met the threshold according to

SHELDUS in the case of Hurricane Sandy.

4.2 Hurricane forecasts

We use NOAA’s National Hurricane Center (NHC) wind speed probability forecasts to develop
our measure of a hurricane’s landfall uncertainty prior to landfall. In particular, we use text files
containing probabilities that particular locations will experience winds in excess of 64 knots (KT),
which is the lower bound windspeed for hurricanes. Because NOAA does not issue forecasts for the
damage that counties could experience, the hurricane windspeed forecasted for a county acts as a
proxy for the amount of damage, with higher windspeed implying larger damage.

The windspeed probabilities are presented cumulatively for 12-hour windows up to five days out
from the time of each forecast. The NHC reports these wind speeds for cities, towns, and military
bases along the coast as well as some major cities that are more inland (including Birmingham,
AL, Savannah, GA, and Washington, DC.) There are three wind speed thresholds included in these
reports, the lowest and highest of which are the cutoffs for tropical storm-force and hurricane-
force winds, respectively. These windspeed data are derived from the same underlying data of the
hurricane forecast charts published by the NHC in real time and used by news outlets in the run-up
to hurricanes. Figure 4 shows an example of the forecast chart of cumulative probability bands for
hurricane force winds, as presented by the NHC, over a five day period in the case of Hurricane
Sandy in 2012.

We have taken two steps to deal with the fact that the wind speed probabilities in these text
files are only reported for particular locations, most of which are coastal. First we define a set
of criteria that counties with data must meet in order to be considered at risk. For example, we
might define a location as being at risk if it has at least a 20 percent probability of experiencing

hurricane-force winds, that is 64 KT and above, within the next five days. Second, we define as

12



at-risk any county within a 75-mile radius of a county with data that has been defined as being
at-risk in the first step. For each day, we only use the last available forecast before close of trading,
as forecasted hurricane paths can change meaningfully over the course of a day. Figure 5 illustrates
a sample of processed wind speed data at different probability thresholds for Hurricane Sandy over
a period four days.

One benefit of using the wind speed probability data is that it provides us information not only
on where the eye of the storm is expected to be but also on how intense the winds will likely be
and how wide the impact will be geographically. A hurricane that technically never makes landfall
because the eye of the storm never passes over land can still pass close enough to a coastline to
generate significant damage through strong winds, heavy rainfall, and storm surge. The wind speed
forecast would show strong winds in the coastal areas closest to this hurricane. We will be referring
to locations with forecasted windspeeds of 64 KT or more as the locations where the hurricane is
predicted to make landfall. These windspeed forecasts are available from 2007 to 2017.

Table 2 reports summary statistics on the hurricane forecast data used in our empirical analysis.
The number of storms for which we observe forecasts decreases as probability threshold or days
to event resolution (hurricane landfall or, in the case of “misses”, dissipation) increases. Panel A
reports the mean, median, and standard deviation of the number of county-dates observations for
which we have hurricane forecasts for each storm at a given probability threshold. Panel B presents

the observation count by days to resolution at a given probability threshold.

4.3 Firm data

We use data on locations of firm establishments and sales in order to precisely estimate firm
exposure to specific hurricanes. In particular, we use NETS data (see, for example, Neumark,
Wall, and Zhang (2011) and Barnatchez, Crane, and Decker (2017)) to compute the geographic
footprint of a firm. The NETS data contain establishment locations of public and private firms at
the county level at an annual frequency. The data also include sales data for each establishment.
For each hurricane season, we use the firms’ geographic footprints from the previous year. Because
the NETS data end in 2014, we use the geographic footprint from 2014 for hurricanes in 2015-2017.

To obtain financial data for the firms in NETS, we map them to OptionMetrics and CRSP-

Compustat, both data sources are described below. The start of our sample is in 2002, which
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corresponds to the first year for which we have OptionMetrics data. The mapping is conducted
based on the name of the firm and the address of the headquarters. We exclude all financial
firms with SIC numbers from 6000 to 6799 from our analysis.'* Summary statistics for the NETS
data are reported in Table 3. From 2002 to 2014, we have 4,197 (4,187) firms in our sample with
establishment (sales) data. On average, a county has 69 establishments and 525 million in sales.
For counties that have experienced hurricane damage the number is higher with an average of 88
establishments and 675 million in sales. Figure 6 shows counties sorted into deciles based on the
number of establishments for the years 2010 and 2014. The economic activity as measured by firm
establishments is high in the hurricane prone areas along the Atlantic and the Gulf Coast.

We obtain daily frequency stock data from CRSP-Compustat and single-name stock options
from OptionMetrics. Similar to previous studies we use the data from out-of-the-money traded
options with valid pricing information,'® and we restrict the set of options to slightly out-of-the-
money options. These are more liquid and have a relatively smaller effect from any potential
early-exercise premium for American options over European options for the time horizons that we
consider.

Accordingly, we include single-stock options with: (i) standard settlement, (ii) a positive open
interest, (iii) a positive bid price and bid-ask spread, (iv) a valid implied volatility estimate,
(v) greater than 7 days and at most 200 days to expiry, and (vi) an option delta, d, that sat-
isfies 0.2 < |§] < 0.5. The estimate for the average implied volatility of firm i at date ¢ is,
IV = % E;\le 1V; j+.m, where M is the nearest-to-maturity expiration at time ¢ with valid op-
tions which satisfy the above criteria and N is the number of valid stock options for firm ¢ with that
expiry. Using this methodology for the period from 2002 to 2017, we obtain 10,152,776 firm-date
observations of implied volatility from OptionMetrics. We merge these data with CRSP-Compustat
on firm CUSIP, which yields 9,420,182 observations covering 5,691 firms and 4,028 dates. Of these
3,866,672 observations are from 2,198 firms that appear at least once in the firm establishment data

from NETS. The summary statistics for these data are in Table 4.

143We provide a separate analysis on insurance firms in Section 6.3.
15See, among others, Carr and Wu (2009); Kelly, Pastor, and Veronesi (2016); Martin and Wagner (2018).
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5 Results

In this section, we describe the regression specifications that we employ to test our hypotheses and
the corresponding results. The three hypotheses are: (i) stock options of firms in hurricane disaster
regions exhibit a higher implied volatility right after a hurricane has hit, in line with investors
perceiving uncertainty about the firms in the disaster region of the hurricane; (ii) abnormal stock
returns of firms with a physical presence in a hurricane disaster region show a large dispersion that
is negatively skewed in the long-run after a hurricane has hit, consistent with a slow resolution
of impact uncertainty; and (iii) pre-landfall, stock and option prices react to hurricane forecasts,
with implied volatility increasing and stock prices decreasing for firms located in the forecasted

hurricane paths, consistent with investors paying attention to hurricane forecasts.

5.1 Impact uncertainty estimation

We begin with testing the hypothesis that stock options of firms in disaster regions have higher im-
plied volatilities. The implied volatility is an estimate of expected future volatility and is commonly
used as a measure of uncertainty. If a hurricane landfall leads to impact uncertainty for firms in
the disaster region, the implied volatilities of these firms should increase. The impact uncertainty
can be isolated and estimated by looking at the implied volatilities shortly after landfall, when
investors know where the hurricane hit, that is all the landfall uncertainty has disappeared, but do
not know what the eventual impact on the firms located in the damage region will be. To test this

first hypothesis, we estimate the following panel regression model,

1V;

log (Il";w) = AHurricaneDamageExposure; 1, + 0n + Vind + €ihr, (9)
i T}

where 7 is the number of trading days since the hurricane made landfall on day 7},.' The last

trading day before the inception of the hurricane is Ty and I'V; is the implied volatility of firm .

HurricaneDamageExposure; 1, is a measure of firm i’s exposure to the counties with hurricane

damage, as defined in equation (7).!7 This measure can vary from 0 percent, for firms with no

161f a hurricane makes multiple landfalls, the first landfall date is used as T}, in the analysis.

"The inception day of a hurricane is defined as the first day on which the hurricane is predicted to make landfall
with at least a 1% probability. For hurricanes before 2007, we do not have hurricane forecast data available and
choose as inception day the first day that the hurricane appeared as a tropical depression.
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exposure to the hurricane disaster region, to 100 percent, for firms with all of their establishments
(or sales) located within the disaster region. The NETS data allow us to use different variables to
measure the county exposure of a firm, namely, the amount of establishments or sales in a specific
county as a percent of the firm’s total establishments and sales, respectively, throughout the U.S.
We include hurricane fixed effects (6y,), which is equivalent to including time fixed effects because
there is one time period per hurricane. We include industry fixed effects (¢1,4) based on the firms’
two-digit SIC numbers. Only firms for which we have implied volatility measures for each trading
day from inception to 7 days after landfall are included in our sample. As our treatment selection
is at a geographic level, we cluster the standard errors based on the county where the headquarters
of a firm are located (see, for example, Dessaint and Matray (2017) and Abadie, Athey, Imbens,
and Wooldridge (2017)).'8

The regression model in equation (9) can also be seen as a differences-in-differences estimation
where each hurricane acts as a treatment, that is firms with exposure to the disaster zone are
considered treated and firms with no exposure to the disaster zone act as controls. Following the
recommendation of Bertrand, Duflo, and Mullainathan (2004), for each hurricane, we collapse the
time series information into a pre- and post-period, where the pre-period is T}, the day before the
inception, and the post-period is T}, + 7, 7 days after the landfall.

The coefficient estimate of A is expected to be significant and positive if investors perceive that
hurricane landfall leads to impact uncertainty surrounding the local firms. A hurricane making
landfall could introduce severe uncertainty for the local economy and firms. Knowing ex-ante
which firms will be most affected is likely impossible because of several factors. First, the number
of hurricane landfalls for a given local economy are mostly insufficient to predict the exact economic
effect. Second, the hurricane’s impact on individual firms in the disaster zone is to a large extent
random, as described in Section 3.1.

The estimation results of the model given in equation (9) are reported in Table 5. Panel A shows
the results when the exposure of a firm to the hurricane disaster region is based on establishments.
We consider selecting counties in the disaster region solely based on FEMA damage data and FEMA

damage data enhanced with SHELDUS data. The value 7, trading days after landfall, is set to 5

18We use the headquarters location for clustering instead of a firm’s geographic footprint as a firm’s geographic
footprint is unique in the great majority of the cases, which would leave us with clusters that are not sufficiently
large to ensure conservative standard error estimates.
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days, but our results are robust to choosing a different 7 close to landfall. We have high quality
option data available from 2002. We also show the results for the time period from 2007 to 2017,
as the hurricane forecast data used in the subsequent analysis start in 2007.

The estimate of A is significant and positive for all specifications, which is in line with our first
hypothesis that hurricane landfall causes impact uncertainty for local firms. In particular, we find
that a firm with 100 percent of its establishments located in the disaster region experiences a 5
to 10% percent increase in its implied volatility relative to before inception of the hurricane. This
economic magnitude is considerable and comparable to Kelly, Pastor, and Veronesi (2016), who
show that political uncertainty leads to implied volatilities of index options increasing on average
around 5 percent around major political elections compared to non-election periods. These results
are robust to including industry times time fixed effects, which implies that the effects are present
within industry.

These results are robust to measuring the geographic footprint of a firm by sales at the county
level instead of establishments, as shown in Panel B. The estimates of A in Panel B are also strongly
significant for all the specifications. The largest coefficient estimates for five days after the landfall
are 0.06, implying that a firm with a 100 percent of its sales in the disaster region has an implied
volatility that is 6 percent higher than before the inception of the hurricane. The fact that the
magnitudes of the coefficients based on exposure of sales (Panel B) are smaller than those based on
exposure of establishments (Panel A) could be explained by investors being more concerned about
damages to production facilities or our data on locations of firm establishments being better than
on the sales.

Importantly, our results are not driven by small firms. The average market capitalization of a
firm with exposure to disaster region counties of at least 20% is $6.0 billion and $8.2 billion when
measuring the exposure by establishments and sales, respectively. The average market capital-
ization of a firm with less than 20% exposure to the disaster region is similar in magnitude with
$6.8 billion and $6.7 billion, respectively. Firms with coastal exposure can differ from other firms
based on unobserved characteristics, and it is possible that firms that would be more vulnerable to
hurricanes because of their particular line of business avoid being exposed to the Atlantic or Gulf
Coast. However, such sorting would bias us against finding evidence of impact uncertainty.

We also test if these results are driven by a particular industry but find that the impact un-
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certainty of hurricanes is similar across industries. Table A.1 in the appendix shows the results
when an industry dummy is interacted with HurricaneDamageExposure; T, in equation (9).1°
The coefficient estimate of the interaction term is insignificant for almost all specifications, which
suggests that the reported effect is not driven by one particular industry. Only the construction
industry shows a consistent pattern of facing less uncertainty surrounding a hurricane than the
other industries, with the caveat that the number of construction firms in our sample is small. A

potential explanation for this finding is that these firms can profit from a hurricane due to a boom

in reconstruction.

5.2 Impact uncertainty resolution

The large impact uncertainty measured in the previous section suggests that firms in the disaster
region face uncertain outcomes. The resolution of this impact uncertainty should be reflected in
the firms’ stock prices in the months following a hurricane landfall. In particular, we test if the
abnormal stock returns of firms with exposure to a hurricane disaster region show a large dispersion
in the long-run, in line with investors learning over time how devastating a hurricane was and which
firms were most adversely affected.

To isolate the resolution of impact uncertainty, we estimate how a hurricane affects firms’ stock
returns after landfall, we first estimate daily abnormal returns relative to the Fama-French three-
factor model (see Fama and French (1993)). For each firm and each hurricane in our sample, the

following model is estimated:

Tid = 0 + B1,iTm.d + 52,iTsmbd + B3,iThmi.d + €id, (10)

where 7, 4 is the daily market return on day d minus the risk-free rate, rgmp.q and rpmiq are the
daily returns of the small-minus-big and high-minus-low portfolios, respectively. We estimate this
model using 200 trading days before the day of hurricane landfall. We then use the coefficient
estimates from this first stage regression to compute abnormal returns for each firm and hurricane
as follows:

a __

Tig = Tid — (& + BriTm.d + Bo.iTsmb.d + B3 hmi.d)- (11)

9The industry dummy is based on the two-digit SIC numbers of the firms. We exclude the agriculture and the
non-classified categories because of the small number of firms.
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We next aggregate the abnormal returns to a cumulative abnormal return, denoted r{'%, .1, .., for
each firm and hurricane over the time period T}, to Ty + 7, where T}, is again the day of the landfall
and 7 is the number of trading days.?’ The time period starts in 2002 and ends in 2017, which
corresponds to the time period used in Table 5. To ensure that stocks with stale prices are excluded
from our analysis, a stock is required to have return data for all trading days from 200 trading days
before landfall to 7 trading days after landfall.

We compute the differences in the mean and nine percentiles between the cumulative abnormal
return distributions of firms with (treated) and without (control) exposure to a hurricane damage
region. The results are reported in Table 6 along with the corresponding t-stats. We estimate the
standard errors using a bootstrap that clusters by county based on firm headquarters. Because
we want to compare the returns in the short- and long-run after hurricane landfall, the cumulative
abnormal returns are computed from the day of landfall for up to 5 and 120 trading days after
landfall.2! For Panel A, we consider firms to be in the disaster region if at least 50 percent of the
establishments are in the disaster region. For Panel B, the threshold is 50 percent of the sales.
Table A.2 in the Appendix shows that the results are robust to lowering the threshold to 25%.

Panel A shows that the cumulative abnormal returns from the landfall day to five days after
yield a negative difference for all percentiles except the top one. These differences are generally
between -10 and -50 basis points, and they are not significant. However, when looking at the
cumulative abnormal returns from landfall day to 120 trading days after the landfall, the differences
in cumulative abnormal returns are strongly negatively skewed. For the 10" and 20*" percentiles,
the difference in cumulative abnormal returns between control and treated firms is around -14
percent and strongly statistically significant, but for the 80™ and 90*" percentiles, the difference
is only around -5 percent and statistically insignificant. In Panel B, firm exposure to hurricane
disaster regions is measured based on a firm’s sales in a county. The cumulative abnormal return
distribution of the treated firms is again negatively skewed and comparable to Panel A in magnitude
and statistical significance for the long horizon. For the period from landfall to 5 trading days after,

the differences between percentiles of the control and treated firms’ return distributions are again

20Tf a hurricane makes landfall on a non-trading day, we take the next trading day as Tj,.

21'We choose 120 trading days as they correspond to half a calendar year. The hurricane season lasts half a calendar
year, and thus, we avoid overlaps with the following year’s hurricane season. The results are robust to a different
benchmark of trading days.
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insignificant.
These findings are in line with a slow resolution of impact uncertainty in the aftermath of a
hurricane. Investors appear to learn over time how devastating a hurricane was and which firms

were most adversely affected.

5.3 Uncertainty before landfall

In Table 5 we show that days after landfall, options price in substantial impact uncertainty in
hurricane disaster regions. However, over the course of the days or weeks while a hurricane makes
its approach toward the Atlantic or the Gulf Coast, NOAA issues hurricane forecasts that contain
the probabilities of the hurricane making landfall in a particular region. Such forecasts are often
highly publicized through news outlets. For example, the forecasted path of Hurricane Sandy in
2012 shown in Figure 4 likely looks familiar to people who tend to follow the news during hurricane
season. Based on the efficient market hypothesis, investors should pay attention to these forecasts,
and the forecasts should be priced in. If investors pay attention to hurricane forecasts before
landfall, then the impact uncertainty will increasingly be priced into options as the likelihood of
a hurricane making landfall in a specific region increases, which is represented by the term ¢o?
in equation (6). In addition, investor attention to hurricane forecasts will also lead to landfall
uncertainty, given by the term ¢(1 — ¢)p, in equation (6), being reflected in option prices through
higher implied volatilities.

We use the NOAA forecasts described in Section 4.2 to examine how hurricane forecasts affect
implied volatilities of firms located in the path of a hurricane and estimate the following panel

regression model

IV, . _
log (IZVThF> = AHurricaneForecastExposure; 1, -t + 0y + Yrna + € n1, (12)
0T}

where I' represents the number of calendar days before the landfall or dissipation of the hurricane
and we estimate the regression separately for each I' € {1,2,3,4,5}, as NOAA forecasts hurricane
paths up to five days out.?? Firm i’s exposure to hurricane h’s forecasted path, H urricaneForecast Exposurer, _r,

is as defined in equation (8). The remaining parameters are as described for regression equation

22Tf a hurricane makes landfall on multiple days, we only consider the first landfall day.
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(9). Only hurricanes for which the day 7} — I' is a trading day are included in the regression. The
time series starts in 2007, because we have high quality hurricane forecast data from 2007 onwards,
and ends in 2017. As described in detail in Section 4.2, the hurricane forecasts provide a probability
that a county will experience windspeeds of at least 64 KT within five days. A storm’s windspeed
has to be at least 64 KT to be classified as a hurricane by NOAA.

If investors pay attention to hurricane forecasts, the estimate of A is expected to be positive
and significant. Particularly, the change in a firms’ implied volatilities should depend on the
probability that a hurricane will make landfall in counties in which the firm operates. In our
framework presented in Section 3.1, we show in Figure 1 that for any probability of landfall greater
than zero, given by the term ¢, the implied volatility will be higher than before the inception of the
hurricane. Further, the total uncertainty given in equation (6) can be higher before landfall, when
landfall and impact uncertainty are present, then right after landfall when there is no uncertainty
about landfall but only uncertainty about the impact of a hurricane. Figure 1 shows that depending
on the parametrization, the total variance (uncertainty) can be higher before landfall, when ¢ is
smaller than 1, than at landfall, that is when ¢ equals 1. Whether total uncertainty is higher before
landfall than right after landfall is ultimately an empirical question.

We report the estimation results of the model in equation (12) in Table 7. The parameter I'
is between 1 and 5 days, and the probabilities of hurricane-level windspeeds that we require to
designate a county as at-risk ranges from 1 to 50 percent. Figure 7 plots the A coeflicient estimates
and confidence interval bands for I'=1 and I'=2. For each I' and probability, we require that at least
three hurricanes and 25 firms that have an exposure of 20 percent or more of their establishments
or sales in counties in the path of a hurricane. Because the days before the landfall or dissipation
of a hurricane can fall on non-trading days and different hurricanes reach probability thresholds
of making landfall on different days, the hurricanes included in the estimation can vary across the
table’s columns.

The results are in line with investors paying attention to hurricane forecasts and the uncertainty
surrounding a hurricane being reflected in the implied volatilities of firms located in the forecasted
path of a hurricane. The estimates of A are always positive, regardless of whether a firm’s exposure
to a hurricane is based on establishments (Panel A) or sales (Panel B). The A estimates are also

significant with the exception of the estimates five days before landfall/dissipation. For each day,
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the magnitude of A increases with higher landfall probabilities. It is clear from Figure 7 that the A
estimates are significant higher at as landfall probability increases. In fact, for high probabilities,
the increase in implied volatilities is in some cases larger than the increase in implied volatilities
right after landfall reported in Table 5.3 This result suggests that the landfall uncertainty is
strongly reflected in option prices and can push the total uncertainty before landfall above the
impact uncertainty measured at landfall, as suggested by our framework in Section 3.1. Overall,
these results are consistent with hurricane forecasts containing valuable information and investors
paying attention to them.

An interesting observation is that the estimated magnitude of A for the same probability is
sometimes lower for days closer to the landfall or dissipation of the hurricane, although not sig-
nificantly so. A possible explanation for this is that hurricanes that reach a specific probability of
making landfall when they are still far off the coast are simply stronger hurricanes that can lead to

more devastating effects.

5.3.1 Alternative specification for forecasts and implied volatilities

The estimates of the regression model shown in equation (12) support the hypothesis that investors
pay attention to hurricane forecasts and the uncertainty surrounding a hurricane is reflected in
option prices before landfall. To further test the robustness of this result, we use an alternative
estimation where we allow for the fact that firms can reach an exposure threshold to a specific hur-
ricane, for example, 10 percent of establishments are located in the forecasted path of a hurricane,
on different days. In the regression model in equation (12), it is not possible to jointly estimate
the change in implied volatilities for these firms. The model specification below allows for a joint
estimation, but the hurricane exposure variable is an indicator variable instead of a continuous

variable as in equation (12). We compute the measure given by

IVii. 1 IV,
VD, =1 tin ) 2 N7 ik ) 13
,h og <I‘/;,T; > ‘Jh’ ; og <I‘/],T;: ( )

23A caveat is that the sample of hurricanes in the two tables can differ. In particular, while in Table 5 we include
only the hurricanes that make landfall, in Table 7 we also consider hurricanes that dissipate without making landfall.
Also, for some hurricanes included in Table 5, a specific day before landfall can be a non-trading day, and thus, the
hurricane would not be included for that day in Table 7. However, the result of higher total uncertainty before the
landfall than right after landfall holds when comparing the same hurricanes.
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where t; j, is the first trading day when the number of establishments (sales) of firm 7 in the path
of hurricane h exceed a certain threshold, and 7}’ is again the last trading day before the inception
of hurricane h. The set of control firms, Jj, for hurricane h are the firms with zero exposure to
the forecasted path of the hurricane. We exclude from this analysis the days on which a hurricane
makes landfall. We compute IV D; j, for all hurricanes and firms and estimate the mean, IV D, for
the sample from 2007 to 2017. A positive and significant IV D would be consistent with the results
shown in Table 7.

The results for this specification are presented in Table 8. Here we use five probability thresh-
olds ranging from 1 to 50 percent to designate which counties lie within the forecasted path of a
hurricane. A 1 percent probability threshold implies that a county has at least a 1 percent chance
of experiencing hurricane-force winds in the next 5 days. We consider three thresholds for a firm’s
exposure to a hurricane wherein 10, 25, and 50 percent of a firm’s establishments (sales) are located
in counties that we have designated as being in the hurricane’s forecasted path. For a 10 percent
threshold, we compute the difference in the implied volatility of firm ¢ on the first trading day that
10 percent of firm ¢ establishments (sales) are located in the hurricane’s forecasted path and the
implied volatility on the last trading day before the inception of the hurricane.

Panel A reports the estimates of IV D when the firm geographic footprints are computed based
on the share of establishments in a county. The estimates of IV D are positive and significant for
the great majority of the specifications. The only two exceptions are for the probability threshold
of 1 percent. As in Table 7, the magnitude of the estimates is monotonically increasing with the
probability of the firms being hit by a hurricane. Further, when selecting only firms with at least
25 or 50 percent of their establishments or sales in at-risk counties, the estimates are substantially
larger than for the firms with an exposure of at least 10 percent. These results further support the
hypotheses that investors pay attention to hurricane forecasts which leads to uncertainty landfall
and expected impact being reflected in the implied volatilities of firms located in the forecasted

path of a hurricane.

5.3.2 Forecasts and stock returns

The results in the previous sections show that hurricane forecasts lead to price effects in option

markets. Consequently, hurricane forecasts should also affect the underlying stock prices. We
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expect that a higher likelihood of a hurricane strike should cause negative stock returns. First, the
stock returns can be depressed because investors require a premium to hold stocks during a time
period of high uncertainty, as, for example, discussed by Pastor and Veronesi (2012, 2013) in the
context of political uncertainty.?* Second, the possibility of a hurricane strike can decrease stock
returns because of lower expected cash flows.

To test if hurricane forecasts affect the stock returns, we estimate the regression model in

equation (12), but with cumulative stock returns as the dependent variable:

ri 11, —1 = AHurricaneForecastExposure;r,—r + 0n + Y1nd + € nr, (14)

where 7 7.7, -1 18 the cumulative return of firm ¢ from the inception of hurricane h to I' calendar
days before the landfall or dissipation of the hurricane.?> An estimate of A that is significant and
negative would support the hypothesis that the uncertainty surrounding firms in a hurricane’s path
leads to negative stocks returns.

The results are reported in Table 9, which is structured the same as Table 7. The estimates
of A are negative in all cases except for the last column that examines effects five days before
landfall/dissipation with a probability of a hurricane hit of 10 percent. The estimates are strongly
significant for the majority of the specifications. The estimates are also economically significant.
The smallest estimate is -0.09, which implies that a firm with a 100 percent exposure to the
forecasted path of a hurricane experiences a negative return of 9 percent from the inception of
the hurricane to a few days before the landfall/dissipation. The estimates are similar when the
geographic footprint of a company is based on establishments, as in Panel A, or on sales, as in Panel
B. These results are consistent with our analysis on implied volatilities and support the hypothesis

that the uncertainty associated with a hurricane leads to negative stock returns.

24Pastor and Veronesi (2012, 2013) look at market effects, which cannot be diversified. The uncertainty surrounding
a hurricane affects individual firms, but the presence of market frictions, for example, limited access to information
as in Merton (1987), can lead to investors demanding a premium for idiosyncratic volatility.

25We use non-adjusted returns in this analysis, but the results are qualitatively the same when using risk-adjusted
returns.
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6 Extensions

Having examined how markets broadly price in impact and landfall uncertainty both before and
after hurricane landfall, we now turn our attention to three key extensions. We ask whether markets
beat NOAA forecasts, what the potential benefit of improving hurricane forecast accuracy is, and
how extreme weather uncertainty affects insurance firms (which are excluded from our baseline

results together with other financial firms).

6.1 Can the market forecast better than NOAA?

The previous results show that market prices react to hurricane forecasts by pricing in the impact
uncertainty caused by a potential hurricane strike. The hurricane forecasts in our analysis are
taken from NOAA. NOAA’s hurricane forecasts are arguably the most prominent as they are
widely publicized through the media. However, it is possible that large institutional investors like
hedge funds, which often act as marginal investors in asset markets and move asset prices, could
outperform the publicly available NOAA hurricane forecasts by trading on proprietary hurricane
forecast information. In this case, markets would predict hurricane damages more precisely than
NOAA forecasts. There are a few of reasons to believe that markets could predict damages more
precisely. First, there is anecdotal evidence that hedge funds buy information on hurricane forecasts
from private companies.?® Second, the budget of NOAA’s subdivision responsible for hurricane
forecasts, the National Weather Service, is minuscule compared to the value of assets managed by
large institutional investors.?” Therefore, a firm that produces proprietary hurricane forecasts and
sells them to institutional investors could potentially generate sufficient revenues to rival NOAA.
Third, because the NOAA forecasts are public and available in real-time, investors can use the
information in the NOAA forecasts and improve upon them with proprietary information.

We test this hypothesis by estimating the panel regression model in equation (12) with an

additional term that measures whether option markets can predict which firms end up more exposed

26Gee, for example, the discussion of the hedge fund with the name Nephila by Michael Lewis here: https://www.
nytimes.com/2007/08/26 /magazine/26neworleans-t.html?pagewanted=all.

2"The total budget of the National Weather Service, a subdivision of NOAA, was around $1 billion in 2017.
However, this budget also includes funds appropriated for weather forecasts other than hurricane forecasts. The
budget of the National Weather Service for 2017 can be found here: https://www.corporateservices.noaa.gov/nbo/.
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to the hurricane than predicted by the NOAA forecasts:

IV, 1 _
log AT Sl =AHurricaneForecast Exposure; 1, —1
IVity (15)

+ yUnder Prediction; 1, -t + 0, + Y¥rpa + € p.1r-

Here Under Prediction; 1, —r is defined as the difference between a firm’s exposure to counties that
eventually experience hurricane related damages and the exposure to counties in a hurricane’s

forecasted path:

UnderPrediction; 1, - =(HurricaneDamage Exposure; T,

— HurricaneForecast Exposure; T, 1) (16)

X I(HurricaneDamageEmposurei7Th 7Hurm'caneForecastEmposurei’Th _1)>0-

Firm ¢ will have a positive value for Under Prediction; 1, _r if the share of its establishments or
sales in counties that experience hurricane damages is greater than the share of its establishments
or sales predicted to be affected based on NOAA forecasts made I' days before landfall. Otherwise,
Under Prediction; 1, —r will assume a value of zero. If the market can forecast which counties will
experience hurricane damage more accurately than NOAA, the estimate of «y in equation (15) would
be significant and positive.?® The underprediction measure can also be thought of as a measure of
false negatives, and we test if markets can detect them.

We look at underpredicted firms rather than overpredicted firms, because a smaller than average
increase in implied volatility for overpredicted firms (firms that end up with less exposure to the
damage region than forecasted) could be explained by markets being less attentive to low probability
forecasts, which include many firms in the forecasted path that end up with no or little exposure
to the damage region. Therefore, analyzing underpredicted firms allows us to better isolate and
estimate the forecast ability of financial markets.

The results are shown in Table 10, which has the same structure as Table 7. While the estimates

28Suppose, for example, that the NOAA forecast implies zero exposure for a firm four days before a hurricane’s
actual landfall. If the firm ends up with significant exposure to counties affected by the hurricane four days later,
Under Prediction; 1, —4 would equal the exposure of the firm to the actual hurricane damage region. If the markets
are able to predict the final exposure four days ahead when the NOAA forecast did not, v would reflect this by being
significant and positive.

26



of v are positive, in line with the market forecasting better than NOAA, they are insignificant for all
but one weakly significant coefficient estimate. Therefore, we do not find support for the hypothesis
that markets can forecast hurricanes better than NOAA. This null result could be caused by a lack of
statistical power. However, given that the number of firms with a non-zero Under Prediction; 1, —r
measure is quite large with an average of around 1,200 across the specifications, we should have
sufficient power to detect the market’s ability, if any, to beat NOAA forecasts. In contrast, the
coefficient estimates on HurricaneForecastExposure; 1, —r are positive and strongly significant

for most specifications as in Table 7.2

6.2 The economic effect of improved forecasts

The previous findings show that markets price in NOAA’s hurricane forecasts and furthermore
do not appear to be able to outperform NOAA forecasts. These findings lead to the question:
what economic effect would improved hurricane forecasts have? In other words, how much of
the price variation in options around hurricanes were caused by mispredictions, that is over- and
underpredictions.?® This price variation could potentially be reduced by more accurate forecasts.3!

To answer this question, we compute by how much implied volatilities are too high or low on
average due to an overprediction or underprediction. To estimate by how much implied volatilities
are too high due to an overprediction, we compute the average overprediction (for the day before
landfall or dissipation) for the probability thresholds shown in Table 7. We then multiply this
average overprediction by the coefficient estimate on HurricaneForecastExposure; r, —r of the
corresponding probability threshold given in Panel A of Table 7. To estimate by how much implied
volatilities are too low due to an underprediction, we multiply the average underprediction by the

equation (9) coefficient on HurricaneDamageExposure; T, estimated for the respective hurricanes

29We also test if our results change when we focus on options for which the underlying stocks have a large insti-
tutional ownership, because institutional investors are more likely than retail investors to have the means to obtain
hurricane forecasts that are not generated by NOAA. However, we do not find evidence of the market outperforming
NOAA.

3While the measure of underprediction is described in equation 16, the overprediction measure is de-
fined as OwerPrediction; ,-r = (Hurm'caneDamageEmposurei,Th — HurricaneForecastE;cposurei7T,L,p) X
I(HurricaneDamageEacposurei,Th—Hurm'caneForecastE:cposurei,Th,F)<O' The overprediction measure can be thought of as
a measure of false positives.

31 Alley, Emanuel, and Zhang (2019) show that hurricane forecasts have indeed improved dramatically in recent
decades. In particular, they find that “modern 72-hour predictions of hurricane tracks are more accurate than 24-hour
forecasts were 40 years ago.”
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in the sample using five days post-landfall.??

Figure 8 presents the results of this analysis. Panel A shows the average over- and underreactions
in implied volatilities resulting from over- and underpredictions. The magnitudes are large, reaching
75 basis points for the overpredictions and -150 basis points for the underpredictions. To provide
more intuition on the economic significance, we multiply the over- and underreactions in the implied
volatilities with the average market capitalization of the respective firms and show the results in
Panel B.33 The resulting product tells us by how much the expected fluctuations of the market
capitalization changes due to the over- and underpredictions. The overpredictions reach values of
above $60 millions, and the underpredictions lead to values of below -$80 millions. Considering
that the number of firms affected by over- and underpredictions is large as reported in Panel C,
these results imply that improvements to hurricane forecasts could have large economic effects on

pricing of hurricane related uncertainty in option markets.

6.3 Insurance firms

The analysis and discussion so far in this paper has been focused on the universe of firms excluding
financial firms as common in the asset pricing literature. One contribution of this paper is to show
that the uncertainty around extreme weather events affects a wide range of firms and not only
insurance firms which are often thought of in the context of natural disasters. However, we also
want to investigate if extreme weather uncertainty is reflected in the asset prices of insurance firms.
The challenge that we face is that the number of publicly traded insurance firms with liquid options
is relatively limited and we only have the exposure of an insurance firm at the state level, not at
the county level.

We use data on insurance statutory financials from S&P Global Market Intelligence, which
provides us with the share of total premiums written by state for property and casualty insurance
firms in the US. We estimate the regression in equation (9) for these property and casualty insurance
firms, with HurricaneDamageExposure; T, being replaced by a variable that measures the share

of total premiums, lagged by one year, written in states that experienced damage by hurricane h.

32The damage exposure of a firm is based on the combined FEMA and SHELDUS dataset, and the number of
establishments act as the geographic footprint measure.

33For example, for the underprediction of the 50% or more probability threshold, we multiply the average underre-
action of -1.54% with 0.44, which is the average implied volatility level in our sample, and then multiply the resulting
product with the average market capitalization.
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The results are reported in Table 11. Panel A (B) considers a state to have experienced hurricane
damage if at least 10% (25%) of the counties experienced hurricane damage as measured by FEMA
data and FEMA data enhanced with SHELDUS.

The coefficient estimate is positive and significant for all specifications implying that the impact
uncertainty for property and casualty insurance firms is substantial in the aftermath of a hurricane.
The magnitude of the coefficient estimates are economically significant, with the implied volatility
being up to 40% higher for insurance firms with a 100% exposure to the damage region of the
hurricane. The statistical significance is slightly weaker than for the universe of firms in Table 5
as the number of insurance firms in our sample is relatively small. We have on average 20 to 30

insurance firms per hurricane depending on the specification.

7 Conclusion

This paper studies extreme weather uncertainty through prices in option and stock markets by
analyzing the uncertainty surrounding hurricanes. Our framework distinguishes between landfall
uncertainty (on where the hurricane will hit, if at all) and impact uncertainty (on the consequences
to the local firms and economy following landfall).

We find that options of firms operating in regions affected by hurricanes have considerably
higher implied volatilities, between 5 to 10 percent, in the immediate aftermaths of those hurri-
canes. The higher implied volatilities are in line with investors being concerned about substantial
impact uncertainty right after a hurricane has hit. The stock returns of firms in damage regions
show a strong negative skewness in the long-run consistent with a slow resolution of impact un-
certainty. Using daily hurricane forecasts from NOAA, we find that landfall uncertainty combined
with potential impact uncertainty are both priced before a hurricane makes landfall.

Our novel analysis and framework contribute to a burgeoning climate finance literature. Fur-
ther, we add to the existing uncertainty literature by showing that extreme weather uncertainty is
important and reflected in the prices of options and stock markets. Future research can build on
the results in this paper by linking extreme weather uncertainty to real economic activity. Extreme
weather uncertainty potentially affects firm production networks, commodity and agricultural mar-

kets, and decisions by various economic agents.
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Figure 1: Variance as a function of the probability of hurricane landfall

This figure shows the total variance prior to landfall, Var:(r; ++1) derived in equation (6), as the probability of landfall,
¢, varies from 0 to 1. In this figure, 0 = 0.4 and o4, = 0.05. The four dashed lines have absolute values of 0.1, 0.07, 0.05,
and 0 for iy. The solid line shows the level of variance conditional on hurricane landfall, Vary(r; 110 = 1) = o + o,
as defined in equation (3).
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Figure 2: US counties with hurricane damage

This figure highlights the counties with at least one hurricane related IHP declaration during the sample period from
2002 to 2017 (Panel A) and the sample period from 2007 to 2017 (Panel B). The map is constructed using data from
FEMA.
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Figure 3: Counties with damage from Hurricane Sandy.

This figure highlights the counties with THP-level damages from Hurricane Sandy in 2012. The map is constructed
using data from FEMA and SHELDUS.
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Figure 4: Example of a five-day forecast of a hurricane.

This figure from NOAA illustrates the five-day forecast for Hurricane Sandy on October 27, 2012. We obtain the raw
data underpinning such hurricane forecast visualizations for our analysis.
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October 26, 2012, 4 days before landfall

>1 percent >10 percent >20 percent >50 percent
Figure 5: Hurricane Forecasts At Different Time Frames and Windspeed Probability Thresholds

Each map shows the counties indicated as being at-risk for Hurricane Sandy given the number of days before landfall
in each row and the wind speed probability threshold shown in each column. Note that the 5-day ahead forecast was
excluded due to space constraints. Source: NOAA.
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Figure 6: Firm establishments by county

This chart plots counties based on the number of establishments located in that county for the years 2010 (Panel A)
and 2014 (Panel B). The data are from NETS. Only firms that could be mapped to CRSP-Compustat are included.
The counties are sorted into deciles based on the number of establishments.
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Figure 7: Implied volatility difference for firms exposed to a hurricane forecast path

This chart plots the implied volatility difference for firms exposed to hurricane forecast path one and two days
before hurricane landfall/dissipation. This corresponds to the A coefficient estimate in regression equation (12) by
probability threshold. The complete results of the regressions are presented in Table 7. The blue shaded region above
and below the plotted line depicts the confidence interval of the estimates.
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Figure 8: Economic effects of differences in forecast and damage exposure

Panel A plots by how much the implied volatility is on average overreacting (underreacting) due to an overprediction
(underprediction), i.e., the firm’s forecast exposure to a hurricane is greater (smaller) than the firm’s eventual damage
exposure. Panel B, depicts the average implied volatility overreaction (underreaction) multiplied with the average
market capitalization of the respective firms. Panel C plots the number of firms for which the forecast exposure to a
hurricane is greater (smaller) than the firm’s eventual damage exposure summed across all the hurricanes from 2007
to 2017. The analysis is based on hurricane forecasts one day before landfall or dissipation. The geographic footprint
of firms is based on the number of establishments in counties. The damage exposure is measured with FEMA and
SHELDUS data.
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Table 1: Summary statistics of hurricane damage data

This table reports summary statistics on the damage data for each hurricane from 2002 to 2017 based on FEMA and
SHELDUS. Counties are eligible for individual and household program (IHP) assistance if there is a FEMA disaster
declaration due to significant damage from a hurricane on a per capita basis.

Mean Median Std Dev  Min Max Obs

FEMA Counties with THP declarations 80 72 53 16 254 20
SHELDUS Counties with property damage 175 137 126 24 466 20
SHELDUS Counties with THP-worthy damages 100 7 88 5 345 20

SHELDUS Property damages estimate ($millions) 12,158 2,808 24,613 32 89,432 20

Table 2: Summary statistics of hurricane forecast data

This table reports summary statistics of NOAA windspeed forecasts from 2007 to 2017 for storms that are forecasted
to make landfall within five days with windspeeds of at least 64KT with a given minimum probability. Panel A
reports the mean, median, and standard deviation of the number of county-dates observations for which we have
hurricane forecasts for each storm at a given probability threshold. Panel B presents the observation count by days
to resolution (hurricane landfall or, in the case of “misses”, dissipation) at a given probability threshold.

Panel A: Summary statistics of county date forecast observations per storm

Probability >

1 10 20 40 50
N Storms 49 17 14 9 9
N County Days 14,988 2,093 913 414 335
Mean 305.878 42.714 18.633  8.449 6.837
Median 124.000  0.000 0.000 0.000 0.000
Std. Dev. 402.974 91.761 43.723 20.857 18.004

Panel B: Number of county date forecast observations

Days to dissipation or Probability >
landfall

1 10 20 40 50
1 2,251 536 371 239 199
2 3,131 678 320 149 122
3 3,198 545 159 14 14
4 2,431 187 37 12 0
5 1,929 101 21 0
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Table 3: Firm establishment and sales summary statistics

This table reports the summary statistics on the number of establishments and amount of sales (in USD) in the
NETS dataset from 2002 to 2017 for the firms that were matched to equity data from CRSP-Compustat.

Number of firms with establishment/sales data
Establishments 4,197
Sales 4,187

Statistics by firm-year

Avg SD 10% percentile  50% percentile  90% percentile
Establishments 69.397 323.093 1.000 4.000 110.000
Sales (in millions) 524.601  2,465.746 0.310 31.642 959.216
Statistics by county-year

Avg SD 10% percentile  50% percentile  90% percentile
Establishments 66.659 207.904 2.000 14.000 143.000
Sales (in millions) 503.377  2,088.409 2.408 58.780 894.028
Statistics by county-year for hurricane damaged counties

Avg SD 10% percentile 50% percentile 90% percentile
Establishments 88.054 241.813 3.000 21.000 214.000
Sales (in millions) 675.404 2,831.049 2.923 87.663 1,260.017
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Table 4: Summary statistics of implied volatility

This table reports the summary statistics on the single-stock options data from January 1, 2002 to December 31, 2017
from OptionMetrics including the number of observations (N), mean, median, standard deviation, 25" 75t 100,
and 90" percentiles. Panel A includes the options dataset once merged with CRSP-Compustat. Panel B further
restricts the sample to firms appearing at least once in the NETS firm establishment data.

Panel A: Firms matched to CRSP-Compustat

N Mean Median Stdev 25th 75th 10th 90th
Vi, 9,420,182 0453  0.384 0273  0.272 0551  0.205 0.778
log (,ﬁjl) 9,420,182 0.001  0.000 0.124  -0.042 0.045 -0.105 0.110
Days to expiryi s 9,420,182 38.852  29.000 35.427 17.000  40.000 11.000  93.000

Total open interest;; 9,420,182 2,396.119 267.000 11,321.761 54.000 1,347.000 13.000 5,106.000

Panel B: Firms matched to CRSP-Compustat and NETS

N Mean Median Stdev 25th 75th 10th 90th
Vi 3,866,672 0.440  0.372 0.265  0.267 0.530  0.202 0.750
log (7712%) 3,866,672 0.001  0.000 0126 -0.043 0.045  -0.106 0.112
Days to expirys 3,866,672 39.243  29.000 35577 17.000  40.000 11.000  93.000

Total open interest;; 3,866,672  2,080.397  234.000 7,681.694 50.000 1,194.000 12.000 4,584.000
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Table 5: Hurricane effects on implied volatility

This table reports the coefficients and test statistics when estimating the panel model in equation (9). The dependent
variable is the change (in percent) in the implied volatility of firm ¢ from the day before the inception day of the
hurricane T}, until 5 trading days after the landfall T},. The independent variable measures how much of the geographic
footprint of a firm is exposed to the disaster area. For Panel A, the geographic footprint used to measure the exposure
to a hurricane of a firm is based on establishments per county, and for Panel B, the geographic footprint is based on
sales per county. To identify counties that have been damaged by a hurricane we use FEMA data and FEMA data
enhanced with SHELDUS data. The data are from 2002 to 2017. Results are also shown for the subsample from
2007 to 2017, which corresponds to the time period for which we have hurricane forecast data used in the subsequent
analysis. The values in parentheses are the t-stats. The standard errors are clustered by county (headquarter
location). Industry and time fixed effects are used. The significance of the coefficient estimate is indicated by * for
p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Firms’ hurricane exposure based on establishments

Dependent variable: Change in IV, log <IVi,Th+5/IVZ~7T;)

2002-2017 2007-2017
FEMA FEMA+SHELDUS FEMA FEMA+SHELDUS
DamageExposure; T, 0.072***  0.053***  0.071*** 0.057*** 0.085"** 0.065"** 0.086"** 0.071***
(4.345) (3.222) (4.316) (3.428) (4.250) (2.933) (4.181) (3.225)
Adjusted R? (%) 13.379 14.128 13.574 14.336 14.841 15.793 14.862 15.824
Obs. total 12,156 12,156 12,621 12,621 7,204 7,204 7,204 7,204
Obs. firm exposure > 0% 5,387 5,387 5,938 5,938 3,020 3,020 3,261 3,261
Obs. firm exposure > 20% 805 805 974 974 479 479 593 593
Obs. firm exposure > 50% 286 286 317 317 175 175 199 199
Hurricanes 19 19 20 20 10 10 10 10
Industry FE Yes No Yes No Yes No Yes No
Time FE Yes No Yes No Yes No Yes No
Industry x Time FE No Yes No Yes No Yes No Yes

Panel B: Firms’ hurricane exposure based on sales

Dependent variable: Change in IV, log (IVZ-,T,LH, /IVZ,T;)

2002-2017 2007-2017
FEMA FEMA+SHELDUS FEMA FEMA+SHELDUS
DamageEzposure; T, 0.051***  0.038*™**  0.050"**  0.039™** 0.063"** 0.048"** 0.063"** 0.052"**
(3.554) (2.738) (3.726) (3.084) (3.810) (2.771) (3.964) (3.155)
Adjusted R? (%) 13.368 14.139 13.556 14.337 14.829 15.797 14.845 15.821
Obs. total 12,126 12,126 12,590 12,590 7,194 7,194 7,194 7,194
Obs. firm exposure > 0% 5,365 5,365 5,916 5,916 3,006 3,006 3,249 3,249
Obs. firm exposure > 20% 808 808 953 953 488 488 595 595
Obs. firm exposure > 50% 391 391 447 447 235 235 279 279
Hurricanes 19 19 20 20 10 10 10 10
Industry FE Yes No Yes No Yes No Yes No
Time FE Yes No Yes No Yes No Yes No
Industry x Time FE No Yes No Yes No Yes No Yes
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Table 6: Abnormal returns post hurricane landfall

This table reports differences in cumulative abnormal returns post landfall between firms with exposure (treated) and
firms without exposure (control) to the hurricane disaster region. The differences are reported for the mean and nine
percentiles of the return distributions of the treated and control firms. The differences are estimated for two time
periods: from landfall to 5 trading days and 120 trading days after landfall, respectively. The abnormal returns are
estimated based on the Fama-French three factor model. FEMA and SHELDUS data are used to identify counties
that have been hit by a hurricane. For Panel A, the hit firms are defined as firms that have 50 percent or more of
their establishments in the counties of the disaster region, and for Panel B, 50 percent or more of the sales have to be
located in the disaster area counties. We exclude hurricanes that affected less than 25 firms. The data are from 2002
to 2017. The standard errors are bootstrapped and clustered by county (headquarter location). The significance of
the difference in abnormal returns is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Hit firms selected based on exposure in disaster region > 50%

From 0 to 5 days post landfall From 0 to 120 days post landfall

Cumulative r difference T-stat Cumulative r difference T-stat

Mean 0.103 0.197 -6.489 -1.562
Percentiles

10% -0.315 -0.637 -13.754"** -3.556
20% -0.479 -0.801 -14.781*** -3.550
30% -0.214 -0.681 -10.241** -2.310
40% -0.241 -1.003 -7.871%" -2.213
50% -0.500" -1.858 -7.491%** -3.402
60% -0.357 -1.215 -8.262"** -2.734
70% -0.143 -0.327 -4.529 -1.395
80% -0.199 -0.423 -3.795 -1.061
90% 0.927 0.523 -5.708 -0.910
Hit firms 415 382

Control firms 8,376 7,027

Panel B: Hit firms selected based on sales in disaster region > 50%

From 0 to 5 days post landfall From 0 to 120 days post landfall

Cumulative r difference T-stat Cumulative r difference T-stat

Mean 0.131 0.248 -6.501"* -1.968
Percentiles

10% -0.661 -1.139 -12.215*** -2.577
20% -0.438 -0.823 -10.233** -2.502
30% -0.313 -0.967 -6.862™* -2.528
40% -0.314 -0.947 -5.394™* -2.195
50% -0.318 -0.848 -5.697*** -2.693
60% -0.054 -0.144 -5.633*** -2.923
70% 0.278 0.439 -4.838"* -2.127
80% 0.251 0.382 -3.559 -1.215
90% 0.948 0.828 -6.667 -1.120
Hit firms 641 622

Control firms 10,115 9,795
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Table 11: Hurricane effects on implied volatility of insurance firms

This table reports the coefficients and test statistics when estimating the panel model in equation (9) for insurance
firms. The dependent variable is the change (in percent) in the implied volatility of firm ¢ from the day before the
inception day of the hurricane T until 5 trading days after the landfall T},. The independent variable measures the
share of total premiums written by an insurance firm in states that experienced damage by a hurricane. For Panel A,
a state is considered to have experienced hurricane damage if at least 10% of the counties experienced damage, and
for Panel B, the threshold is 25% of the counties. To identify counties that have been damaged by a hurricane we
use FEMA data and FEMA data enhanced with SHELDUS data. The data are from 2002 to 2017. Results are also
shown for the subsample from 2007 to 2017 as in Table 5. The values in parentheses are the t-stats. The standard
errors are clustered by insurance firm. Time fixed effects are used. The significance of the coefficient estimate is
indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: State considered hit if 10% or more of the counties were damaged

Dependent variable: Change in IV, log (IVZ-,T,L%/IVLT:)

2002-2017 2007-2017
FEMA FEMA+4+SHELDUS FEMA FEMA+SHELDUS

StateDamage Exposure;, T, 0.348** 0.328* 0.357* 0.360**
1.985 1.963 1.850 1.995
Adjusted R? (%) 36.894 34.790 33.399 33.597
Obs. total 400 418 238 238
Obs. insurance firm exposure > 0% 356 374 207 207
Obs. insurance firm exposure > 20% 49 88 30 53
Obs. insurance firm exposure > 50% 11 11 11 11
Hurricanes 18 19 9 9
Time FE Yes Yes Yes Yes

Panel B: State considered hit if 25% or more of the counties were damaged

Dependent variable: Change in IV, log (IV;,T,L_‘_s/IVi,T;)

2002-2017 2007-2017
FEMA FEMA+SHELDUS FEMA FEMA+SHELDUS

StateDamageExposure; T, 0.426™ 0.400** 0.424* 0.413**
1.922 2.329 1.733 2.251
Adjusted R? (%) 38.482 36.595 37.328 38.254
Obs. total 367 385 205 205
Obs. insurance firm exposure > 0% 326 345 177 179
Obs. insurance firm exposure > 20% 22 43 14 27
Obs. insurance firm exposure > 50% 7 11 7 11
Hurricanes 17 18 8 8
Time FE Yes Yes Yes Yes
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Appendix A Additional tables

Table A.1: Hurricane effects on implied volatility with industry interactions

This table reports the coefficients and test statistics when estimating the panel model in equation (9) but including
an industry interaction term. The dependent variable is the change (in percent) in the implied volatility of firm ¢ from
the day before the inception of the hurricane until 5 trading days after the landfall. The first independent variable
measures how much of the geographic footprint of a firm is exposed to the disaster area. The second independent
variable interacts the exposure to the disaster area with an industry indicator variable for industry g. The industry
classification is based on two-digit SIC numbers. For Panel A, the geographic footprint used to measure the exposure
to a hurricane of a firm is based on establishments per county, and for Panel B, the geographic footprint is based
on sales per county. The analysis is based on damage data from FEMA and FEMA enhanced with SHELDUS data.
The data are from 2002 to 2017. The values in parentheses are the t-stats. The standard errors are clustered by
county (headquarter location). Industry and time fixed effects are used. The significance of the coefficient estimate
is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Firms’ hurricane exposure based on establishments

Dependent variable: Change in 1V, log (I‘[ifh‘*'f)/[‘/i,T,j)

Damage based on FEMA

Interaction industry Construct. Manufact.  Mining Retail Services  Transport. Wholesale
DamageExposure; T, 0.072*** 0.086™** 0.072***  0.073***  0.073"** 0.060*** 0.067***
(4.359) (4.643) (3.403) (4.492) (4.078) (3.100) (3.840)
DamageExposure; 1, X Licindustry, -0.125 -0.043 -0.002 -0.039 -0.009 0.068 0.078
(-1.528) (-1.385) (-0.048)  (-0.367)  (-0.196) (1.294) (1.242)
Adjusted R? (%) 13.375 13.384 13.372 13.374 13.373 13.392 13.381
Obs. total 12,156 12,156 12,156 12,156 12,156 12,156 12,156
Obs. exposure > 0% 5,387 5,387 5,387 5,387 5,387 5,387 5,387
Obs. exposure > 20% 805 805 805 805 805 805 805
Obs. exposure > 50% 286 286 286 286 286 286 286
Obs. i € Industryy 212 5,356 1,146 1,218 2,221 1,512 383
Number of hurricanes 19 19 19 19 19 19 19
Damage based on FEMA+SHELDUS
Interaction industry Construct. Manufact.  Mining Retail Services  Transport. Wholesale
DamageExposure; T, 0.072™*~ 0.080™**  0.071*** 0.075"*"  0.074™**  0.059™"" 0.067""*
(4.359) (4.226) (3.597) (4.484) (4.223) (3.022) (3.915)
DamageExzposure; , X licindustry, -0.216™** -0.027 0.001 -0.084 -0.018 0.075 0.086
(-3.137) (-0.902) (0.032) (-0.953)  (-0.383) (1.433) (1.417)
Adjusted R? (%) 13.576 13.572 13.567 13.577 13.568 13.591 13.578
Obs. total 12,621 12,621 12,621 12,621 12,621 12,621 12,621
Obs. exposure > 0% 5,938 5,938 5,938 5,938 5,938 5,938 5,938
Obs. exposure geq 20% 974 974 974 974 974 974 974
Obs. exposure geq 50% 317 317 317 317 317 317 317
Obs. i € Industry, 221 5,562 1,174 1,273 2,317 1,569 394
Number of hurricanes 20 20 20 20 20 20 20
Industry FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
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Table A.1: Hurricane effects on implied volatility with industry interactions (contin-
ued)

Panel B: Firms’ hurricane exposure based on sales

Dependent variable: Change in IV, log (IVi,Th%/I‘/i,Tg)

Damage based on FEMA

Interaction industry Construct. Manufact.  Mining Retail Services  Transport. Wholesale
DamageExposure; 0.052*** 0.063***  0.047***  0.053"**  0.058™*" 0.041*** 0.047***
(3.621) (3.699) (2.874) (3.944) (3.633) (2.588) (3.156)
DamageExposure; 1, X Licindustry, -0.129™ -0.034 0.019 -0.037 -0.037 0.057 0.068
(-2.028) (-1.428) (0.561)  (-0.438)  (-1.039) (1.560) (1.517)
Adjusted R? (%) 13.367 13.372 13.364 13.363 13.369 13.381 13.372
Obs. total 12,126 12,126 12,126 12,126 12,126 12,126 12,126
Obs. exposure > 0% 5,365 5,365 5,365 5,365 5,365 5,365 5,365
Obs. exposure > 20% 808 808 808 808 808 808 808
Obs. exposure > 50% 391 391 391 391 391 391 391
Obs. i € Industry, 212 5,333 1,146 1,211 2,221 1,512 383
Number of hurricanes 19 19 19 19 19 19 19
Damage based on FEMA+SHELDUS
Interaction industry Construct. Manufact.  Mining Retail Services  Transport. Wholesale
DamageExposure; T, 0.051*** 0.056™** 0.047***  0.052***  0.058"** 0.038™* 0.047***
(3.777) (3.378) (3.168) (4.053) (3.996) (2.500) (3.473)
DamageExposure; T, X licindustry, -0.119** -0.019 0.016 -0.050 -0.049 0.070* 0.041
(-2.327) (-0.808) (0.516)  (-0.665)  (-1.457) (1.823) (0.908)
Adjusted R$2$ (%) 0.136 0.136 0.136 0.136 0.136 0.136 0.136
Obs. total 12,590 12,590 12,590 12,590 12,590 12,590 12,590
Obs. exposure $;$ 0% 5,916 5,916 5,916 5,916 5,916 5,916 5,916
Obs. exposure > 20% 953 953 953 953 953 953 953
Obs. exposure geq 50% 447 447 447 447 447 447 447
Obs. i € Industryy 221 5,538 1,174 1,266 2,317 1,569 394
Number of hurricanes 20 20 20 20 20 20 20
Industry FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
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Table A.2: Abnormal returns post hurricane landfall (alternative threshold)

This table reports differences in cumulative abnormal returns post landfall between firms with exposure (treated) and
firms without exposure (control) to the hurricane disaster region. Compared to Table 6, the exposure threshold for a
firm to be characterized as treated is reduced from 50% to 25%. The differences are reported for the mean and nine
percentiles of the return distributions of the treated and control firms. The differences are estimated for two time
periods: from landfall to 5 days and 120 days after landfall, respectively. The abnormal returns are estimated based
on the Fama-French three factor model. FEMA and SHELDUS data are used to identify counties that have been hit
by a hurricane. For Panel A, the hit firms are defined as firms that have 25 percent or more of their establishments
in the counties of the disaster region, and for Panel B, 25 percent or more of the sales have to be located in the
disaster area counties. We exclude hurricanes that affected less than 25 firms. The data are from 2002 to 2017. The
standard errors are bootstrapped and clustered by county (headquarter location). The significance of the difference
in abnormal returns is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Hit firms selected based on establishments in disaster region > 25%

From 0 to 5 days post landfall From 0 to 120 days post landfall

Cumulative r difference T-stat Cumulative r difference T-stat

Mean 0.049 0.120 -4.997** -1.980
Percentiles

10% -0.476 -1.038 -12.693** -3.103
20% -0.657 -1.924 -7.216™" -2.283
30% -0.251 -0.980 -6.168™** -2.661
40% -0.268 -1.195 -4.392** -2.211
50% -0.224 -0.980 -4.672%*" -2.944
60% -0.276 -1.210 -4.427** -2.243
70% -0.079 -0.170 -3.727 -2.395
80% -0.066 -0.154 -3.553 -1.556
90% 1.223 1.264 -2.197 -0.483
Hit firms 1,131 1,096

Control firms 9,977 9,665

Panel B: Hit firms selected based on sales in disaster region > 25%

Mean 0.037 0.086 -4.113 -1.640
Percentiles

10% -0.085 -0.221 -8.691™* -2.129
20% -0.452 -1.221 -4.930" -1.658
30% -0.201 -0.752 -4.622" -1.763
40% -0.193 -0.712 -3.738"* -1.984
50% -0.237 -0.931 -3.501" -1.935
60% -0.132 -0.469 -3.366" -1.855
70% 0.020 0.046 -2.478" -1.653
80% -0.022 -0.051 -2.897 -1.353
90% 0.268 0.289 -4.740 -1.194
Hit firms 1,164 1,131

Control firms 9,898 9,583
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