400 kV Overhead Transmission Line Oradea – Békéscsaba.

400 kV Shunt Reactor to be installed in the Oradea South Substation.

Telecommunications and Teletransmission equipment on the 400 kV Overhead Transmission Line Oradea - Békéscsaba.

EXECUTIVE SUMMARY OF ENVIRONMENTAL IMPACT ASSESSMENT

June 2004

Consultant, Designer,

FICHTNER ROMELECTRO ENGINEERING
Lacul Tei Blvd. No.: 1 - 3
Bucharest – ROMANIA

ISPE
Lacul Tei Blvd. No.: 1 – 3
Bucharest – ROMANIA

Investor,
National Company TRANSELECTRICA S.A.

B-dul. Gen. Gh. Magheru no. 33, Bucharest, 70164, ROMANIA.
400 kV Overhead Transmission Line Oradea – Békéscsaba.

400 kV Shunt Reactor to be installed in the Oradea South Substation.

Telecommunications and Teletransmission equipment on the 400 kV Overhead Transmission Line Oradea - Békéscsaba.

EXECUTIVE SUMMARY OF ENVIRONMENTAL IMPACT ASSESSMENT

June 2004
CONTENT

EXECUTIVE SUMMARY OF ENVIRONMENTAL IMPACT ASSESSMENT........1

1. INTRODUCTION ...1
 1.1 BACKGROUND ..2

2. PROJECT DESCRIPTION ...2
 2.1 TECHNICAL DESCRIPTION ..2
 2.2 GEOGRAPHICAL LOCATION ..2
 2.3 ANALYSIS OF ALTERNATIVES ...3

3. EXISTING ENVIRONMENTAL CONDITIONS ...3
 3.1 SOIL ..3
 3.2 GROUNDWATER ...3
 3.3 SURFACE WATER ..3
 3.4 BIODIVERSITY ...3
 3.5 AIR QUALITY ..4
 3.6 LANDSCAPE ..4

4. SIGNIFICANT ENVIRONMENTAL AND HEALTH & SAFETY IMPACTS AND4
 MITIGATION MEASURES ...4
 4.1 IMPACT ON SOIL ...4
 4.2 IMPACT ON SURFACE WATER ...4
 4.3 IMPACT ON BIODIVERSITY AND LOSS OF HABITAT ..4
 4.4 IMPACT ON AMBIENT AIR QUALITY ..5
 4.5 NOISE ..5
 4.6 VIBRATION ...5
 4.7 WASTE ..5
 4.8 ELECTROMAGNETIC RADIATION IMPACTS ...6
 4.9 VISUAL IMPACTS ON LANDSCAPE ...6
 4.10 OCCUPATIONAL HEALTH AND SAFETY ...6
 4.11 CULTURAL AND ETHNICAL IMPACTS ...6
 4.12 SOCIAL AND ECONOMIC ..6
 4.13 DECOMMISSIONING IMPACTS ..7
 4.14 SUMMARY OF ENVIRONMENTAL, HEALTH AND SAFETY IMPACTS7
 4.15 METHODS USED FOR THE ASSESSMENT OF IMPACTS ..7

5. OUTLINE OF ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN8
 5.1. OUTLINE PROGRAMME FOR MONITORING IMPACTS ON THE ENVIRONMENT8
 5.2. OUTLINE PLANNED ENVIRONMENTAL MANAGEMENT MEASURES10

6. RISK ASSESSMENT ..10

7. PUBLIC DISCLOSURE AND CONSULTATION ...11

8. INFORMATION SOURCES: ...12

Annex A: Maps

1. INTRODUCTION
1.1 Background

Romania seeks to integrate its electricity systems with the European systems, which is expected to result in growing electricity flow from Romania to Europe. This requires the strengthening of connection networks. At present, Romania and Hungary share a single interconnection OHTL, Arad-Sandorfalva (400 kV). A new 400 kV overhead line (OHTL) between Oradea and the Romanian-Hungarian border has been chosen as a priority in order to enhance the linkage between Romania and EU. The proposed OHTL would also maximise reliability and efficiency and reduce losses.

The construction and operation of OHTL may involve a wide range of environmental impacts, which cannot be readily identified, assessed or mitigated. Therefore, the project has been required to undergo an Environmental Impact Assessment (EIA). The objective of the EIA has been to ensure that the Project would not result in significant adverse environmental impacts and that all necessary mitigation measures will be included in the Project design and construction programme. The EIA has been primarily carried out in accordance with Romanian Environmental Law No.: 137/1995. However, because Transelectrica has requested the European Bank for Reconstruction and Development (“EBRD”) to participate in the funding of the Project, the EIA has also been structured to meet EBRD’s specific requirements for an EIA.

This Executive Summary is prepared to provide a non-technical summary of the key findings and conclusions of the EIA.

2. PROJECT DESCRIPTION

2.1 Technical description

The project involves the construction and operation of an overhead transmission line (OHTL) of 400 kV nominal voltages between the town of Oradea and Békéscsaba at the Romanian-Hungarian border. The total length of the OHTL on the Romanian territory is about 97 km.

The planned OHTL consists of two distinct sections:

- One single circuit section of 74 km between Oradea South and Nadab, laid on 211 single circuit RODELTA-type steel towers;
- One double circuit section of 23 km between south Nadab and the milestone no. 54 at the Romanian-Hungarian border, laid on 67 double circuit DONAU-type steel towers, with one circuit equipped on stage I.

2.2 Geographical location

The OHTL route begins from 400/110 kV Oradea substation, located in the southern zone of Oradea city and ends at Hungarian border, south of border stone no.54, where it joins the section to be constructed on Hungarian territory. The route crosses 12 administrative territories within Bihor
(Oradea, Sinmartin, Nojorid, Cefa, Madaras, Chisineu Cris, Socodor, and Graniceri) counties.

2.3 Analysis of alternatives

Three alternatives routes for the OTHL were investigated, taking into account the environmental impacts of the line construction (see map in annex A):

- alternative 1 (black),
- alternative 2 (red)
- alternative 3 (green).

The alternative 1 was chosen, because it will have the lowest negative impact on forests, highly productive agricultural lands, surface water courses and occupied land areas.

3. EXISTING ENVIRONMENTAL CONDITIONS

3.1 Soil

Various soil types are represented in the OHTL corridor: phreatic wet chernozem, cambic chernozem, alluvial deposits and alluvial grounds. Geological investigation, including soil sampling, showed that soil in the OHTL route mainly consists of dusty and sandy clays with mud lenses.

3.2 Groundwater

The groundwater in the OHTL corridor is found at variable levels, depending on the relief and the hydrological network. The groundwater table is lower than the tower foundation base level throughout the OHTL corridor. The OTHL corridor crosses several water draining systems, which collect the rain and snowmelt, to prevent water stagnation phenomena.

3.3 Surface water

The OHTL crosses 32 rivers (36 crossings), of which the most important are: Gepiu Valley, Bicaciu Valley, Banului Valley, the Culiser Channel, the Crisul Negru, Sartis Valley, Leveles, Teuzul, the Drainage Channel (2 crossings), Ciumeghiu Valley, the Crisul Mort, the Crisul Alb, Chiser Valley, Selestoara, The Morilor Channel. There are no lakes in the OHTL corridor.

3.4 Biodiversity

The OHTL corridor has been established to avoid nature reserve areas, woodlands and the areas of high agricultural efficiency. The OHTL mainly crosses through field areas and therefore the biodiversity on its route is limited.
3.5 Air quality

The OHTL corridor is, as a rule, a low polluted zone, except the end zone of Oradea switchgear area, in which a coal-fired thermal plant represents the main polluting source. For this reason, the OHTL insulation on 90% of the route length has been sized for the pollution degree II and 10% for pollution degree III.

3.6 Landscape

The OHTL route has been established so as to meet the co-inhabitance requirements imposed by the natural landscape, objects, buildings, and facilities in the neighborhood. The OHTL preponderantly crosses the field zone. The OHTL corridor is not in immediate vicinity of schools, kindergartens and residential areas with high density of population. However, in five locations isolated houses are located at the distance of 100 m or less from the corridor.

4. SIGNIFICANT ENVIRONMENTAL AND HEALTH & SAFETY IMPACTS AND MITIGATION MEASURES

4.1 Impact on soil

During the construction of the OHTL, accidental spills and leaks of oil products and mineral oils from the operation of lorries and equipment may contaminate the soil and/or groundwater. Contamination with excavation materials and other materials used in the civil works may also occur. The impacts will be mitigated by adhering to good international work practices and planning.

4.2 Impact on surface water

The OTHL route line will have no impact on the water level on the 32 rivers it crosses. The towers will be placed so as to leave a protection zone along rivers and streams. The width of the protection zone is is 15 m when crossing streams with the span ranging of 10-15 m, and 5 m when crossing drainage channels. In flood prone areas, the towers will be placed outside the flooding area. No water will be used for technological purposes. Waste-waters from construction camps will be collected in mobile eco-toilets and collected by licenced companies.

4.3 Impact on biodiversity and loss of habitat

The OHTL mainly crosses through field areas and therefore the biodiversity on its route is limited. No rare or endangered species of flora and fauna are found in OHTL zone. The construction of foundations, erection of towers and placement of conductors on the towers can have a significant impact on
local flora and fauna. These include damage to plants by machinery and man, disturbance of bird nesting areas, siltation of streams and improved drainage leading to a decrease in water content of bogs. However, the above mentioned inconveniences are temporary and negligible in extent. Forest clearance will be limited to Mihis forest zone, in which a section of less than 1 ha will be cleared. The cleared vegetation will be recovered by planting small trees and plants.

The OHTL does not interfere with any major bird migration routes. However, the flight paths of some species may be disturbed by the presence of the OHTL lines. In areas of known flight paths where the OHTL is planned, warning spheres will be placed on the cables to enable birds avoid them.

4.4 Impact on ambient air quality

The construction of the OHTL will generate minor amounts of air pollutants from fuel combustion (light fuel oil) used for supplying lorries and equipment. The emissions have been assessed to be about 1,760 t throughout the whole period of OHTL construction. These will have negligible impact on ambient air quality.

During the operating stage the corona effect around the high voltage OHTL will generate ground level ozone. The ambient ozone concentrations will remain within permissible regulatory limits.

4.5 Noise

During the construction, noise level of 65 dB can be temporarily exceeded due to the operation of lorries and equipment in the working zone of the OHTL site. Noise abatement measures will be taken in the zones crossing the residential areas, including adequate work scheduling.

During operation phase, some noise is generated by the corona effect around live conductors. The measurements made on the 400 kV OHTL’s of Romania show that the noise level, at 25 m from the live conductor, ranges between 53 dB on rainy weather and 33 dB on dry weather. These noise levels will have limited impact on the health and comfort of people who live in the immediate vicinity (within 100 m) of the OHTL.

4.6 Vibration

The vibration sources are the conductors subject to the wind dynamic load. For damping vibrations anti/vibrating devices AV-5 will be installed over the entire OHTL length. Periodically, someone will check their efficiency and replace the damaged anti/vibrating devices.

4.7 Waste

Waste generation

Wastes are mainly resulted from the excavated material for performing the OHTL towers foundations (about 30,825 t) and from the demolished
concrete used for the platforms for the site construction organization (2,000 m³, about 5,000 tons). All the wastes will be disposed of according to the legislation in licensed municipal landfills.

Wastes removal and recycling
It is recommended to study the opportunity of using the excavated material resulted from the excavations made for laying the OHTL towers, as well as the concrete resulted from the demolition of the towers mounting platforms, as a filling up material for some zonal roads embankments.

4.8 Electromagnetic radiation impacts

The OHTL generates non-ionizing radiation, which may generate thermal, physical-chemical effects. During the operation, any electromagnetic facility represents the source of electromagnetic emission released in the outdoor environment. The assessment of electromagnetic radiation from both single and double circuit parts of the OTHL under normal weather conditions showed that the OHTL meets established allowable levels. Under special weather conditions, both OHTL conductors and the insulator strings can locally develop corona discharges. The level of these limited disturbances shall be monitored after OHTL Commissioning.

4.9 Visual impacts on landscape

The OHTL route was established so as to meet the co-inhabitance requirements imposed by the natural landscape, objects, buildings, and facilities in the neighborhood, as per Romanian norm PE 104/2003. The selected route is not expected to cause any damage to historical, archeological and cultural sites, assuring it’s framing into the existing industrial landscape and with an impact on as limited land areas as possible.

4.10 Occupational Health and Safety

During OHTL operation period, failures and accidents can occur, which impose emergency intervention for its improving and remedy, as well as periodical investigations and revisions. As protective measures, the towers will be provided with danger plates and anticlimbing systems to prevent people climbing on towers.

4.11 Cultural and ethnical impacts

The proposed project is not expected to have an impact on the ethnical and cultural heritage. An assistance contract will be concluded with the county museums of Arad and Oradea throughout the works period to ensure no archaeologically valuable areas will be disturbed.

4.12 Social and economic

The proposed project will have a positive effect on the zonal infrastructure, but it is not a job creating project. The landowners in the region will get
compensation for the lands completely or temporarily occupied with the 400 kV OHTL works. There is no need for resettlement in the OHTL corridor.

4.13 Decommissioning impacts

Where the OHTL will be put out of operation the following materials will result:
- steel aluminum from phase conductors and ground wires;
- steel from towers;
- concrete and steel concrete from foundations;
- composite materials from insulators.

Some of the materials can be used in the recycling process (for example: steel angle, conductors), and some of them must be disposed according to the legislation. After the completions of works, the landscape must be returned to its initial form (before the start of the works).

4.14 Summary of environmental, health and safety impacts

In the construction stage, the OHTL has the following environmental impact level:
- high on land using;
- moderate on visual feeling, air quality, noise level, the forests, the energy resources, the population;
- low on the water quality, the geology, the fauna and flora;
- positive effect on the social-economic aspects.

In the operating stage, the OHTL has the following environmental impact level:
- moderate on land using and visual feeling, taking into consideration that in Romania there are about 8,000 km of 220 – 400 kV OHTL, 18,000 km of 110 kV OHTL, 570,000 km of LV-MV OHTL; in this respect, the population is accommodated with such kind of installations and have not observed panic feeling up to date.
- low on the fauna and flora, the vegetation, the non-ionizing radiations, the radio TV disturbances, the air quality, the noise level, the forests;
- positive effect on the social-economic aspects and population.

4.15 Methods used for the assessment of impacts

The impact assessment was based on the designer’s data, on the notices made on the work site and on the data collected from laws, specialty literature, all of them introduced in the OHTL design.
5. OUTLINE OF ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

5.1. Outline programme for monitoring impacts on the environment

Table 5.1 – Monitoring schedule of 400 kV Oradea - Békéscsaba OHTL

<table>
<thead>
<tr>
<th>Stage</th>
<th>Parameter to be monitored</th>
<th>Monitoring Location</th>
<th>Monitoring modality</th>
<th>Measurement frequency</th>
<th>Monitoring purpose</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Works compliance with the works corridor zone</td>
<td>Working & neighbor zone</td>
<td>Visual</td>
<td>Permanent</td>
<td>Not exceeding the assigned to the project</td>
<td>Translectrica</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>Working zone</td>
<td>Sound meter</td>
<td>Permanent in the zones where OHTL passes residential areas</td>
<td>Complying with the STAS 6156/86 restrictions</td>
<td>Translectrica</td>
</tr>
<tr>
<td>Construction</td>
<td>Wastes (excavations resulting material and concrete wastes)</td>
<td>Working zone</td>
<td>Determining wastes volume existing in temporary pits and wastes loaded in lorries</td>
<td>Each carriage monitoring on departure and at destination</td>
<td>To avoid discharges in non – authorized zones</td>
<td>Translectrica</td>
</tr>
<tr>
<td></td>
<td>Waste waters</td>
<td>Working zone</td>
<td>By measuring the store tanks volume</td>
<td>Once a week</td>
<td>To prevent uncontrolled discharges</td>
<td>Translectrica</td>
</tr>
<tr>
<td></td>
<td>Vegetation</td>
<td>Working and neighbor zone</td>
<td>By taking pictures</td>
<td>2 times at the beginning and at the end of works</td>
<td>Bringing back to initial state of the land temporarily out</td>
<td>Translectrica</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Electromagnetic fields</td>
<td>Cihei and Gepiu workers colony</td>
<td>Apparatus to determine electric and magnetic fields</td>
<td>On commissioning OHTL and then yearly</td>
<td>Prevent disease risk by non-ionizing radiations</td>
<td>Translectrica</td>
</tr>
<tr>
<td></td>
<td>Ozone concentration</td>
<td>Cihei and Gepiu colony</td>
<td>Ozone analyzers photometric method in UV (ISO 13964)</td>
<td>On commissioning OHTL under wet and calm weather</td>
<td>Compliance with CMA for emissions according to Order 592/2002</td>
<td>Translectrica</td>
</tr>
<tr>
<td></td>
<td>Vertical and horizontal gauge checking between OHTL conductors and buildings, road ways and rail ways, streams, etc.</td>
<td>All OHTL length</td>
<td>Visual with specific devices</td>
<td>On commissioning and then at 5 years</td>
<td>Accidents preventing</td>
<td>Translectrica</td>
</tr>
</tbody>
</table>
400 kV Overhead Transmission Line Oradea – Békéscsaba. 400 kV Shunt Reactor to be installed in the Oradea South Substation.
Telecommunications and Teletransmission equipment on the 400 kV Overhead Transmission Line Oradea - Békéscsaba

<table>
<thead>
<tr>
<th>Monitoring of warning plates on existing risks in OHTL zone</th>
<th>On each OHTL tower</th>
<th>Visual inspection</th>
<th>On commissioning and then, monthly</th>
<th>Accidents preventing</th>
<th>Transelectrica</th>
<th>Transelectrica</th>
</tr>
</thead>
</table>

5.2. Outline planned environmental management measures

Table 5.2–Environment management design for 400 kV Oradea – Békéscsaba OHTL

<table>
<thead>
<tr>
<th>No.</th>
<th>Action</th>
<th>Responsible Company</th>
<th>Requests draw up</th>
<th>Time – period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Action schedule for emergency cases (accidents) for obtaining the Environment Accord</td>
<td>Transelectrica</td>
<td>Environment Certificate</td>
<td>End of 2004</td>
</tr>
<tr>
<td>2.</td>
<td>Restricted working hours (near localities, during performance of urgent agricultural works, etc.)</td>
<td>Transelectrica</td>
<td>Building stage preparation</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Control of excavations and wastes management (place, land clearing off frequency in OHTL zone, removal modality, s.f)</td>
<td>Transelectrica</td>
<td>Specification in contract</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Zone supervising and effect upon vegetation restraining beyond the working corridor</td>
<td>Transelectrica</td>
<td>Specification in contract</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Waste waters collecting, transport to a sewerage system. Complementary services if necessary</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Public information about possible disagreements caused by the civil works</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Public information about access restrictions in the zone, access roads temporary out of operation</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Completion of works within the shortest time; clean zone preserving</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Traffic schedule performance for aggregates equipment, lorries and protection equipment operation</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Forbidding of any material discharge into ground waters</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Monitoring of works and environment quality</td>
<td>Transelectrica</td>
<td>Specification in the contract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Working out of the environmental impact monitoring design (electromagnetic fields and ozone in OHTL zone)</td>
<td>Transelectrica</td>
<td>Monitoring design</td>
<td>permanent</td>
</tr>
<tr>
<td>13.</td>
<td>Public relation and information about the operation effects on the environment and inhabitants of the region, presence of risk warning plates</td>
<td>Transelectrica</td>
<td>Public and representative mass-media periodical meetings</td>
<td>permanent</td>
</tr>
<tr>
<td>14.</td>
<td>Maintenance of OHTL facilities under good condition and nice aspect for diminishing visual impact and cleaning in the towers and access corridor zone</td>
<td>Transelectrica</td>
<td>Routine</td>
<td>permanent</td>
</tr>
<tr>
<td>15.</td>
<td>Checking up of the earthing system technical condition of OHTL towers and the neighbor steel structures</td>
<td>Transelectrica</td>
<td>Routine check up</td>
<td>permanent</td>
</tr>
<tr>
<td>16.</td>
<td>Horizontal and vertical overall dimensions recovery between OHTL conductors and ground, streams, roads, railways, bridges, woods, s.f</td>
<td>Transelectrica</td>
<td>Routine check up</td>
<td>permanent</td>
</tr>
<tr>
<td>17.</td>
<td>Action schedule in emergency cases, fire resulted from short-circuit between OHTL conductors, earthingls, steel structures energizing, on-load conductors dropping into streams, vs. necessary equipping for diminishing the effect of these failures</td>
<td>Transelectrica</td>
<td>Action schedule preparation for emergencies, OHTL operation resulting failures</td>
<td>permanent</td>
</tr>
</tbody>
</table>

6. RISK ASSESSMENT
The following risks and emergency situations have been identified:
- Natural risks (earthquake, floods, draught, landslides, s.f.)
- Potential failures
 - fires with an impact over the environment (Mihiș woods zone).
 - Electric shocks.

The risks will be mitigated through preventive actions, including:
- Maintenance of OHJ good technical conditions, clearances between OHTL conductors and buildings, other structures, facilities, transport ways, groundwater, etc.
- Mounting warning plates on OHTL towers, warning local population about the electric shocks risk and informing them about the health risk induced by long standing in OHTL zone, mainly for people with heart stimulators.
- Installation of fire detectors on the towers in Mihis woods zone, which will detect the beginning of the fire, in order to announce urgently the local fire brigade.
- De-energizing the line, in case of electrical shocks. The line protection equipment will restrain the propagation of the failure.

7. Public disclosure and consultation

Transelectrica is currently carrying out public consultation process in accordance with Romanian EIA law. The public consultation process will be amended so as to meet EBRD specific requirements for public disclosure and consultation.

An initial public hearing (scoping meeting) of the study programme was organised on 19 March 2004 at (where?) to identify relevant issues to be addressed in the EIA study. The potentially affected population, local community organizations, NGOs and local governmental agencies were invited to provide comments on the project through two newspaper announcements in Arad and Bihor regions as well as letters and e-mails sent directly to potentially interested stakeholders. On 16 April 2004, all comments received were collected and analysed. No comments on the scope of the EIA or concerns for the project had been filed.

In accordance with Romanian EIA law, the EIA report has been made available to public for review and comments at Oradea, from 5 July and at Arad, from 6 July.

In accordance with EBRD public disclosure and consultation requirements, the public has been notified in Romanian daily newspaper (on 24 June 2004) that the EIA in Romanian language and this Executive Summary in both Romanian and English languages have been disclosed for public at municipal offices of Arad and Bihor municipalities, at Transelectrica’s head office in Bucharest, in EBRD Resident Office in Bucharest and EBRD Business Information Centre (BIC) in London on 25 June 2004. The EIA and this Executive Summary in both Romanian and English languages have
also been made available for public on Transelectrica’s website (link). The Executive Summary in both Romanian and English languages is also posted on EBRD’s website (www.ebrd.com). The public comment period required by the EBRD is 120 days and will close on 23 October 2004.

Translectrica will organise on-going disclosure of information on the progress of the project and its environmental impacts throughout the project implementation on its website, in annual environmental reports and through periodic press releases.

8. Information sources:

[2]. ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields, Health Physics 74; 494-522, 1998
[3]. Directiva Direcţiei a V-a a Comisiei Uniunii Europene ;
[4]. CENELC – Human exposure to electromagnetic fields; Low frequencies, European standard ENV 50166, 1995
[6]. American Conference of Government Industrial Hygienists (ACGIH) –Subradiofrequency magnetic fields, pp.55-64, 1994